Proton-coupled electron transfer: a reaction chemist's view

Proton-coupled electron transfer (PCET) reactions involve the concerted transfer of an electron and a proton. Such reactions play an important role in many areas of chemistry and biology. Concerted PCET is thermochemically more favorable than the first step in competing consecutive processes involvi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of physical chemistry 2004-01, Vol.55 (1), p.363-390
1. Verfasser: Mayer, James M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Proton-coupled electron transfer (PCET) reactions involve the concerted transfer of an electron and a proton. Such reactions play an important role in many areas of chemistry and biology. Concerted PCET is thermochemically more favorable than the first step in competing consecutive processes involving stepwise electron transfer (ET) and proton transfer (PT), often by >=1 eV. PCET reactions of the form X-H + Y X + H-Y can be termed hydrogen atom transfer (HAT). Another PCET class involves outersphere electron transfer concerted with deprotonation by another reagent, Y+ + XH-B Y + X-HB+. Many PCET/HAT rate constants are predicted well by the Marcus cross relation. The cross-relation calculation uses rate constants for self-exchange reactions to provide information on intrinsic barriers. Intrinsic barriers for PCET can be comparable to or larger than those for ET. These properties are discussed in light of recent theoretical treatments of PCET.
ISSN:0066-426X
1545-1593
DOI:10.1146/annurev.physchem.55.091602.094446