Multi-source transfer learning of time series in cyclical manufacturing

This paper describes a new transfer learning method for modeling sensor time series following multiple different distributions, e.g. originating from multiple different tool settings. The method aims at removing distribution specific information before the modeling of the individual time series take...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent manufacturing 2020-03, Vol.31 (3), p.777-787
Hauptverfasser: Zellinger, Werner, Grubinger, Thomas, Zwick, Michael, Lughofer, Edwin, Schöner, Holger, Natschläger, Thomas, Saminger-Platz, Susanne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 787
container_issue 3
container_start_page 777
container_title Journal of intelligent manufacturing
container_volume 31
creator Zellinger, Werner
Grubinger, Thomas
Zwick, Michael
Lughofer, Edwin
Schöner, Holger
Natschläger, Thomas
Saminger-Platz, Susanne
description This paper describes a new transfer learning method for modeling sensor time series following multiple different distributions, e.g. originating from multiple different tool settings. The method aims at removing distribution specific information before the modeling of the individual time series takes place. This is done by mapping the data to a new space such that the representations of different distributions are aligned. Domain knowledge is incorporated by means of corresponding parameters, e.g. physical dimensions of tool settings. Results on a real-world problem of industrial manufacturing show that our method is able to significantly improve the performance of regression models on time series following previously unseen distributions. Graphic abstract
doi_str_mv 10.1007/s10845-019-01499-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2366171084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2366171084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-239a90ce906d8f50a00a6b0a3c51e8a4bce2346424b314dab98b35d95d3403083</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwBZgsMRvO8Z_aI6qgRSpigdm6OA5ylSbFToZ-exKCxMZwuuW9d_d-hNxyuOcAq4fMwUjFgNtxpLVMnpEFV6uCGS7VOVmAVZopxdUlucp5DwDWaL4gm9eh6SPL3ZB8oH3CNtch0SZgamP7Sbua9vEQaA4phkxjS_3JN9FjQw_YDjX6fkij8Jpc1NjkcPO7l-Tj-el9vWW7t83L-nHHvATds0JYtOCDBV2ZWgECoC4BhVc8GJSlD4WQWhayFFxWWFpTClVZVQkJAoxYkrs595i6ryHk3u3H19vxpCuE1nw1gRhVxazyqcs5hdodUzxgOjkObgLmZmBuBOZ-gLnJJGZTPk6NQvqL_sf1DaNSbaU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2366171084</pqid></control><display><type>article</type><title>Multi-source transfer learning of time series in cyclical manufacturing</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zellinger, Werner ; Grubinger, Thomas ; Zwick, Michael ; Lughofer, Edwin ; Schöner, Holger ; Natschläger, Thomas ; Saminger-Platz, Susanne</creator><creatorcontrib>Zellinger, Werner ; Grubinger, Thomas ; Zwick, Michael ; Lughofer, Edwin ; Schöner, Holger ; Natschläger, Thomas ; Saminger-Platz, Susanne</creatorcontrib><description>This paper describes a new transfer learning method for modeling sensor time series following multiple different distributions, e.g. originating from multiple different tool settings. The method aims at removing distribution specific information before the modeling of the individual time series takes place. This is done by mapping the data to a new space such that the representations of different distributions are aligned. Domain knowledge is incorporated by means of corresponding parameters, e.g. physical dimensions of tool settings. Results on a real-world problem of industrial manufacturing show that our method is able to significantly improve the performance of regression models on time series following previously unseen distributions. Graphic abstract</description><identifier>ISSN: 0956-5515</identifier><identifier>EISSN: 1572-8145</identifier><identifier>DOI: 10.1007/s10845-019-01499-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Business and Management ; Control ; Learning ; Machines ; Manufacturing ; Mapping ; Mechatronics ; Modelling ; Performance enhancement ; Processes ; Production ; Regression models ; Robotics ; Time series</subject><ispartof>Journal of intelligent manufacturing, 2020-03, Vol.31 (3), p.777-787</ispartof><rights>The Author(s) 2019</rights><rights>Journal of Intelligent Manufacturing is a copyright of Springer, (2019). All Rights Reserved. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-239a90ce906d8f50a00a6b0a3c51e8a4bce2346424b314dab98b35d95d3403083</citedby><cites>FETCH-LOGICAL-c406t-239a90ce906d8f50a00a6b0a3c51e8a4bce2346424b314dab98b35d95d3403083</cites><orcidid>0000-0003-1166-6062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10845-019-01499-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10845-019-01499-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Zellinger, Werner</creatorcontrib><creatorcontrib>Grubinger, Thomas</creatorcontrib><creatorcontrib>Zwick, Michael</creatorcontrib><creatorcontrib>Lughofer, Edwin</creatorcontrib><creatorcontrib>Schöner, Holger</creatorcontrib><creatorcontrib>Natschläger, Thomas</creatorcontrib><creatorcontrib>Saminger-Platz, Susanne</creatorcontrib><title>Multi-source transfer learning of time series in cyclical manufacturing</title><title>Journal of intelligent manufacturing</title><addtitle>J Intell Manuf</addtitle><description>This paper describes a new transfer learning method for modeling sensor time series following multiple different distributions, e.g. originating from multiple different tool settings. The method aims at removing distribution specific information before the modeling of the individual time series takes place. This is done by mapping the data to a new space such that the representations of different distributions are aligned. Domain knowledge is incorporated by means of corresponding parameters, e.g. physical dimensions of tool settings. Results on a real-world problem of industrial manufacturing show that our method is able to significantly improve the performance of regression models on time series following previously unseen distributions. Graphic abstract</description><subject>Business and Management</subject><subject>Control</subject><subject>Learning</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mapping</subject><subject>Mechatronics</subject><subject>Modelling</subject><subject>Performance enhancement</subject><subject>Processes</subject><subject>Production</subject><subject>Regression models</subject><subject>Robotics</subject><subject>Time series</subject><issn>0956-5515</issn><issn>1572-8145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD9PwzAQxS0EEqXwBZgsMRvO8Z_aI6qgRSpigdm6OA5ylSbFToZ-exKCxMZwuuW9d_d-hNxyuOcAq4fMwUjFgNtxpLVMnpEFV6uCGS7VOVmAVZopxdUlucp5DwDWaL4gm9eh6SPL3ZB8oH3CNtch0SZgamP7Sbua9vEQaA4phkxjS_3JN9FjQw_YDjX6fkij8Jpc1NjkcPO7l-Tj-el9vWW7t83L-nHHvATds0JYtOCDBV2ZWgECoC4BhVc8GJSlD4WQWhayFFxWWFpTClVZVQkJAoxYkrs595i6ryHk3u3H19vxpCuE1nw1gRhVxazyqcs5hdodUzxgOjkObgLmZmBuBOZ-gLnJJGZTPk6NQvqL_sf1DaNSbaU</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Zellinger, Werner</creator><creator>Grubinger, Thomas</creator><creator>Zwick, Michael</creator><creator>Lughofer, Edwin</creator><creator>Schöner, Holger</creator><creator>Natschläger, Thomas</creator><creator>Saminger-Platz, Susanne</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1166-6062</orcidid></search><sort><creationdate>20200301</creationdate><title>Multi-source transfer learning of time series in cyclical manufacturing</title><author>Zellinger, Werner ; Grubinger, Thomas ; Zwick, Michael ; Lughofer, Edwin ; Schöner, Holger ; Natschläger, Thomas ; Saminger-Platz, Susanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-239a90ce906d8f50a00a6b0a3c51e8a4bce2346424b314dab98b35d95d3403083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Business and Management</topic><topic>Control</topic><topic>Learning</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mapping</topic><topic>Mechatronics</topic><topic>Modelling</topic><topic>Performance enhancement</topic><topic>Processes</topic><topic>Production</topic><topic>Regression models</topic><topic>Robotics</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zellinger, Werner</creatorcontrib><creatorcontrib>Grubinger, Thomas</creatorcontrib><creatorcontrib>Zwick, Michael</creatorcontrib><creatorcontrib>Lughofer, Edwin</creatorcontrib><creatorcontrib>Schöner, Holger</creatorcontrib><creatorcontrib>Natschläger, Thomas</creatorcontrib><creatorcontrib>Saminger-Platz, Susanne</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zellinger, Werner</au><au>Grubinger, Thomas</au><au>Zwick, Michael</au><au>Lughofer, Edwin</au><au>Schöner, Holger</au><au>Natschläger, Thomas</au><au>Saminger-Platz, Susanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-source transfer learning of time series in cyclical manufacturing</atitle><jtitle>Journal of intelligent manufacturing</jtitle><stitle>J Intell Manuf</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>31</volume><issue>3</issue><spage>777</spage><epage>787</epage><pages>777-787</pages><issn>0956-5515</issn><eissn>1572-8145</eissn><abstract>This paper describes a new transfer learning method for modeling sensor time series following multiple different distributions, e.g. originating from multiple different tool settings. The method aims at removing distribution specific information before the modeling of the individual time series takes place. This is done by mapping the data to a new space such that the representations of different distributions are aligned. Domain knowledge is incorporated by means of corresponding parameters, e.g. physical dimensions of tool settings. Results on a real-world problem of industrial manufacturing show that our method is able to significantly improve the performance of regression models on time series following previously unseen distributions. Graphic abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10845-019-01499-4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1166-6062</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0956-5515
ispartof Journal of intelligent manufacturing, 2020-03, Vol.31 (3), p.777-787
issn 0956-5515
1572-8145
language eng
recordid cdi_proquest_journals_2366171084
source SpringerLink Journals - AutoHoldings
subjects Business and Management
Control
Learning
Machines
Manufacturing
Mapping
Mechatronics
Modelling
Performance enhancement
Processes
Production
Regression models
Robotics
Time series
title Multi-source transfer learning of time series in cyclical manufacturing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-source%20transfer%20learning%20of%20time%20series%20in%20cyclical%20manufacturing&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=Zellinger,%20Werner&rft.date=2020-03-01&rft.volume=31&rft.issue=3&rft.spage=777&rft.epage=787&rft.pages=777-787&rft.issn=0956-5515&rft.eissn=1572-8145&rft_id=info:doi/10.1007/s10845-019-01499-4&rft_dat=%3Cproquest_cross%3E2366171084%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2366171084&rft_id=info:pmid/&rfr_iscdi=true