Multi-source transfer learning of time series in cyclical manufacturing

This paper describes a new transfer learning method for modeling sensor time series following multiple different distributions, e.g. originating from multiple different tool settings. The method aims at removing distribution specific information before the modeling of the individual time series take...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent manufacturing 2020-03, Vol.31 (3), p.777-787
Hauptverfasser: Zellinger, Werner, Grubinger, Thomas, Zwick, Michael, Lughofer, Edwin, Schöner, Holger, Natschläger, Thomas, Saminger-Platz, Susanne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes a new transfer learning method for modeling sensor time series following multiple different distributions, e.g. originating from multiple different tool settings. The method aims at removing distribution specific information before the modeling of the individual time series takes place. This is done by mapping the data to a new space such that the representations of different distributions are aligned. Domain knowledge is incorporated by means of corresponding parameters, e.g. physical dimensions of tool settings. Results on a real-world problem of industrial manufacturing show that our method is able to significantly improve the performance of regression models on time series following previously unseen distributions. Graphic abstract
ISSN:0956-5515
1572-8145
DOI:10.1007/s10845-019-01499-4