Magnetic Flux Rope Shredding By a Hyperbolic Flux Tube: The Detrimental Effects of Magnetic Topology on Solar Eruptions

We present the analysis of an unusual failed eruption captured in high cadence and in many wavelengths during the observing campaign in support of the Very high Angular resolution Ultraviolet Telescope (VAULT2.0) sounding rocket launch. The refurbished VAULT2.0 is a Ly (λ 1216 ) spectroheliograph la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2017-07, Vol.843 (2), p.93
Hauptverfasser: Chintzoglou, Georgios, Vourlidas, Angelos, Savcheva, Antonia, Tassev, Svetlin, Beltran, Samuel Tun, Stenborg, Guillermo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present the analysis of an unusual failed eruption captured in high cadence and in many wavelengths during the observing campaign in support of the Very high Angular resolution Ultraviolet Telescope (VAULT2.0) sounding rocket launch. The refurbished VAULT2.0 is a Ly (λ 1216 ) spectroheliograph launched on 2014 September 30. The campaign targeted active region NOAA AR 12172 and was closely coordinated with the Hinode and IRIS missions and several ground-based observatories (NSO/IBIS, SOLIS, and BBSO). A filament eruption accompanied by a low-level flaring event (at the GOES C-class level) occurred around the VAULT2.0 launch. No coronal mass ejection was observed. The eruption and its source region, however, were recorded by the campaign instruments in many atmospheric heights ranging from the photosphere to the corona in high cadence and spatial resolution. This is a rare occasion that enabled us to perform a comprehensive investigation on a failed eruption. We find that a rising Magnetic Flux Rope (MFR)-like structure was destroyed during its interaction with the ambient magnetic field, creating downflows of cool plasma and diffuse hot coronal structures reminiscent of "cusps." We employ magnetofrictional simulations to show that the magnetic topology of the ambient field is responsible for the destruction of the MFR. Our unique observations suggest that the magnetic topology of the corona is a key ingredient for a successful eruption.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/aa77b2