Methane in Analogs of Young Directly Imaged Exoplanets
We present detections of methane in R ∼ 1300, L-band spectra of VHS 1256 b and PSO 318.5, two low-gravity, red, late L dwarfs that share the same colors as the HR 8799 planets. These spectra reveal shallow methane features, which indicate VHS 1256 b and PSO 318.5 have photospheres that are out of ch...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2018-12, Vol.869 (1), p.18 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present detections of methane in R ∼ 1300, L-band spectra of VHS 1256 b and PSO 318.5, two low-gravity, red, late L dwarfs that share the same colors as the HR 8799 planets. These spectra reveal shallow methane features, which indicate VHS 1256 b and PSO 318.5 have photospheres that are out of chemical equilibrium. Directly imaged exoplanets usually have redder near-infrared colors than the field-age population of brown dwarfs on a color-magnitude diagram. These objects along the L-to-T transition show reduced methane absorption and evidence of photospheric clouds. Compared to the H- and K-bands, L-band (3 m-4 m) spectroscopy provides stronger constraints on the methane abundances of brown dwarfs and directly imaged exoplanets that have similar effective temperatures to L-to-T transition objects. When combined with near-infrared spectra, the L-band extends our conventional wavelength coverage, increasing our understanding of atmospheric cloud structure. Our model comparisons show that relatively strong vertical mixing and photospheric clouds can explain the molecular absorption features and continua of VHS 1256 b and PSO 318.5. We also discuss the implications of this work for future exoplanet-focused instruments and observations with the James Webb Space Telescope. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/aae6cd |