The Green Bank Ammonia Survey: Observations of Hierarchical Dense Gas Structures in Cepheus-L1251

We use Green Bank Ammonia Survey observations of NH3 (1, 1) and (2, 2) emission with 32″ FWHM resolution from a ∼10 pc2 portion of the Cepheus-L1251 molecular cloud to identify hierarchical dense gas structures. Our dendrogram analysis of the NH3 data results in 22 top-level structures, which reside...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2017-11, Vol.850 (1), p.3
Hauptverfasser: Keown, Jared, Di Francesco, James, Kirk, Helen, Friesen, Rachel K., Pineda, Jaime E., Rosolowsky, Erik, Ginsburg, Adam, Offner, Stella S. R., Caselli, Paola, Alves, Felipe, Chacón-Tanarro, Ana, Punanova, Anna, Redaelli, Elena, Seo, Young Min, Matzner, Christopher D., Chen, Michael Chun-Yuan, Goodman, Alyssa A., Chen, How-Huan, Shirley, Yancy, Singh, Ayushi, Arce, Hector G., Martin, Peter, Myers, Philip C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use Green Bank Ammonia Survey observations of NH3 (1, 1) and (2, 2) emission with 32″ FWHM resolution from a ∼10 pc2 portion of the Cepheus-L1251 molecular cloud to identify hierarchical dense gas structures. Our dendrogram analysis of the NH3 data results in 22 top-level structures, which reside within 13 lower-level parent structures. The structures are compact and are spatially correlated with the highest H2 column density portions of the cloud. We also compare the ammonia data to a catalog of dense cores identified by higher-resolution (18 2 FWHM) Herschel Space Observatory observations of dust continuum emission from Cepheus-L1251. Maps of kinetic gas temperature, velocity dispersion, and NH3 column density, derived from detailed modeling of the NH3 data, are used to investigate the stability and chemistry of the ammonia-identified and Herschel-identified structures. We show that the dust and dense gas in the structures have similar temperatures, with median Tdust and TK measurements of 11.7 1.1 K and 10.3 2.0 K, respectively. Based on a virial analysis, we find that the ammonia-identified structures are gravitationally dominated, yet may be in or near a state of virial equilibrium. Meanwhile, the majority of the Herschel-identified dense cores appear to be not bound by their own gravity and instead confined by external pressure. CCS (20 − 10) and HC5N emission from the region reveal broader line widths and centroid velocity offsets when compared to the NH3 (1, 1) emission in some cases, likely due to these carbon-based molecules tracing the turbulent outer layers of the dense cores.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/aa93ec