Numerical Modeling of Galactic Cosmic-Ray Proton and Helium Observed by AMS-02 during the Solar Maximum of Solar Cycle 24

Galactic cosmic rays (GCRs) are affected by solar modulation while they propagate through the heliosphere. The study of the time variation of GCR spectra observed at Earth can shed light on the underlying physical processes, specifically diffusion and particle drifts. Recently, the AMS-02 experiment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2019-02, Vol.871 (2), p.253
Hauptverfasser: Corti, Claudio, Potgieter, Marius S., Bindi, Veronica, Consolandi, Cristina, Light, Christopher, Palermo, Matteo, Popkow, Alexis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Galactic cosmic rays (GCRs) are affected by solar modulation while they propagate through the heliosphere. The study of the time variation of GCR spectra observed at Earth can shed light on the underlying physical processes, specifically diffusion and particle drifts. Recently, the AMS-02 experiment measured with very high accuracy the time variation of the cosmic-ray proton and helium flux between 2011 May and 2017 May in the rigidity range from 1 to 60 GV. In this work, a comprehensive three-dimensional steady-state numerical model is used to solve Parker's transport equation and reproduce the monthly proton fluxes observed by AMS-02. We find that the rigidity slope of the perpendicular mean free path above 4 GV remains constant, while below 4 GV, it increases during solar maximum. Assuming the same mean free paths for helium and protons, the models are able to reproduce the time behavior of the p/He ratio observed by AMS-02. The dependence of the diffusion tensor on the particle mass-to-charge ratio, A/Z, is found to be the main cause of the time dependence of p/He below 3 GV.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/aafac4