Cohomology of Colorings of Cycles
We compute the cohomology groups of the spaces of colorings of cycles, i.e., of the prodsimplicial complexes Hom$(C_{m,\,} K_n )$. We perform the computation first with Z₂, and then with integer coefficients. The main technical tool is to use spectral sequences in conjunction with a detailed combina...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2008-06, Vol.130 (3), p.829-857 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We compute the cohomology groups of the spaces of colorings of cycles, i.e., of the prodsimplicial complexes Hom$(C_{m,\,} K_n )$. We perform the computation first with Z₂, and then with integer coefficients. The main technical tool is to use spectral sequences in conjunction with a detailed combinatorial analysis of a family of cubical complexes, which we call torus front complexes. As an application of our method, we demonstrate how to collapse each connected component of Hom$(C_{m,\,} C_n )$onto a garland of cubes. |
---|---|
ISSN: | 0002-9327 1080-6377 1080-6377 |
DOI: | 10.1353/ajm.0.0007 |