Cohomology of Colorings of Cycles

We compute the cohomology groups of the spaces of colorings of cycles, i.e., of the prodsimplicial complexes Hom$(C_{m,\,} K_n )$. We perform the computation first with Z₂, and then with integer coefficients. The main technical tool is to use spectral sequences in conjunction with a detailed combina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2008-06, Vol.130 (3), p.829-857
1. Verfasser: Kozlov, Dmitry N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We compute the cohomology groups of the spaces of colorings of cycles, i.e., of the prodsimplicial complexes Hom$(C_{m,\,} K_n )$. We perform the computation first with Z₂, and then with integer coefficients. The main technical tool is to use spectral sequences in conjunction with a detailed combinatorial analysis of a family of cubical complexes, which we call torus front complexes. As an application of our method, we demonstrate how to collapse each connected component of Hom$(C_{m,\,} C_n )$onto a garland of cubes.
ISSN:0002-9327
1080-6377
1080-6377
DOI:10.1353/ajm.0.0007