THE REPEATING FAST RADIO BURST FRB 121102: MULTI-WAVELENGTH OBSERVATIONS AND ADDITIONAL BURSTS

ABSTRACT We report on radio and X-ray observations of the only known repeating Fast Radio Burst (FRB) source, FRB 121102. We have detected six additional radio bursts from this source: five with the Green Bank Telescope at 2 GHz, and one at 1.4 GHz with the Arecibo Observatory, for a total of 17 bur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2016-12, Vol.833 (2), p.177
Hauptverfasser: Scholz, P., Spitler, L. G., Hessels, J. W. T., Chatterjee, S., Cordes, J. M., Kaspi, V. M., Wharton, R. S., Bassa, C. G., Bogdanov, S., Camilo, F., Crawford, F., Deneva, J., Leeuwen, J. van, Lynch, R., Madsen, E. C., McLaughlin, M. A., Mickaliger, M., Parent, E., Patel, C., Ransom, S. M., Seymour, A., Stairs, I. H., Stappers, B. W., Tendulkar, S. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT We report on radio and X-ray observations of the only known repeating Fast Radio Burst (FRB) source, FRB 121102. We have detected six additional radio bursts from this source: five with the Green Bank Telescope at 2 GHz, and one at 1.4 GHz with the Arecibo Observatory, for a total of 17 bursts from this source. All have dispersion measures consistent with a single value (∼559 pc cm−3) that is three times the predicted maximum Galactic contribution. The 2 GHz bursts have highly variable spectra like those at 1.4 GHz, indicating that the frequency structure seen across the individual 1.4 and 2 GHz bandpasses is part of a wideband process. X-ray observations of the FRB 121102 field with the Swift and Chandra observatories show at least one possible counterpart; however, the probability of chance superposition is high. A radio imaging observation of the field with the Jansky Very Large Array at 1.6 GHz yields a 5 upper limit of 0.3 mJy on any point-source continuum emission. This upper limit, combined with archival Wide-field Infrared Survey Explorer 22 m and IPHAS H surveys, rules out the presence of an intervening Galactic H ii region. We update our estimate of the FRB detection rate in the PALFA survey to be FRBs sky−1 day−1 (95% confidence) for peak flux density at 1.4 GHz above 300 mJy. We find that the intrinsic widths of the 12 FRB 121102 bursts from Arecibo are, on average, significantly longer than the intrinsic widths of the 13 single-component FRBs detected with the Parkes telescope.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/833/2/177