Scattering Theory of Discrete (Pseudo) Laplacians on a Weyl Chamber
To a crystallographic root system we associate a system of multivariate orthogonal polynomials diagonalizing an integrable system of discrete pseudo Laplacians on the Weyl chamber. We develop the time-dependent scattering theory for these discrete pseudo Laplacians and determine the corresponding wa...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2005-04, Vol.127 (2), p.421-458 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 458 |
---|---|
container_issue | 2 |
container_start_page | 421 |
container_title | American journal of mathematics |
container_volume | 127 |
creator | Van Diejen, J. F. |
description | To a crystallographic root system we associate a system of multivariate orthogonal polynomials diagonalizing an integrable system of discrete pseudo Laplacians on the Weyl chamber. We develop the time-dependent scattering theory for these discrete pseudo Laplacians and determine the corresponding wave operators and scattering operators in closed form. As an application, we describe the scattering behavior of certain hyperbolic Ruijsenaars-Schneider type lattice Calogero-Moser models associated with the Macdonald polynomials. |
doi_str_mv | 10.1353/ajm.2005.0012 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_236582951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40067975</jstor_id><sourcerecordid>40067975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-86ac38543b067919c3be5704d7081d3e8d329caf980af6804181dd2387303abb3</originalsourceid><addsrcrecordid>eNpFkM9LwzAYhoMoOKdHj0IQBD10fkmaJj1K_QkDhU08hjRNXUvXzqQ97L83ZWM7hS887_vCg9A1gRlhnD3qej2jAHwGQOgJmhCQECVMiFM0AQAapYyKc3ThfR1OEEAnKFsY3ffWVe0vXq5s57a4K_Fz5Y2zvcX3X94ORfeA53rTaFPp1uOuxRr_2G2Ds5Ve59ZdorNSN95e7d8p-n59WWbv0fzz7SN7mkeGJaSPZKINkzxmOSQiJalhueUC4kKAJAWzsmA0NbpMJegykRCT8F1QJgUDpvOcTdHtrnfjur_B-l7V3eDaMKkoS7ikKScBinaQcZ33zpZq46q1dltFQI2aVNCkRk1q1BT4u32p9kY3pdOtqfwxlAhIUhCBiw_jtTX9evD2uE8kpLFQi1H5aBw4hZgSHmI3u1jt-84damMYHQjO_gFlkH7C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236582951</pqid></control><display><type>article</type><title>Scattering Theory of Discrete (Pseudo) Laplacians on a Weyl Chamber</title><source>Jstor Complete Legacy</source><source>Project MUSE - Premium Collection</source><source>JSTOR Mathematics & Statistics</source><creator>Van Diejen, J. F.</creator><creatorcontrib>Van Diejen, J. F.</creatorcontrib><description>To a crystallographic root system we associate a system of multivariate orthogonal polynomials diagonalizing an integrable system of discrete pseudo Laplacians on the Weyl chamber. We develop the time-dependent scattering theory for these discrete pseudo Laplacians and determine the corresponding wave operators and scattering operators in closed form. As an application, we describe the scattering behavior of certain hyperbolic Ruijsenaars-Schneider type lattice Calogero-Moser models associated with the Macdonald polynomials.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.2005.0012</identifier><identifier>CODEN: AJMAAN</identifier><language>eng</language><publisher>Baltimore, MD: Johns Hopkins University Press</publisher><subject>Algebra ; Calculus ; Classical and quantum physics: mechanics and fields ; Exact sciences and technology ; General theory of scattering ; Hilbert spaces ; Laplacians ; Mathematical analysis ; Mathematics ; Nonlinear equations ; Operator theory ; Physics ; Polynomials ; Recurrence relations ; Root systems ; Sciences and techniques of general use ; Special functions ; Wave functions ; Wave packets ; Weighting functions</subject><ispartof>American journal of mathematics, 2005-04, Vol.127 (2), p.421-458</ispartof><rights>Copyright 2005 The Johns Hopkins University Press</rights><rights>Copyright © 2005 The Johns Hopkins University Press.</rights><rights>2005 INIST-CNRS</rights><rights>Copyright Johns Hopkins University Press Apr 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-86ac38543b067919c3be5704d7081d3e8d329caf980af6804181dd2387303abb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40067975$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40067975$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,21106,27901,27902,56817,57377,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16706907$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Diejen, J. F.</creatorcontrib><title>Scattering Theory of Discrete (Pseudo) Laplacians on a Weyl Chamber</title><title>American journal of mathematics</title><description>To a crystallographic root system we associate a system of multivariate orthogonal polynomials diagonalizing an integrable system of discrete pseudo Laplacians on the Weyl chamber. We develop the time-dependent scattering theory for these discrete pseudo Laplacians and determine the corresponding wave operators and scattering operators in closed form. As an application, we describe the scattering behavior of certain hyperbolic Ruijsenaars-Schneider type lattice Calogero-Moser models associated with the Macdonald polynomials.</description><subject>Algebra</subject><subject>Calculus</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Exact sciences and technology</subject><subject>General theory of scattering</subject><subject>Hilbert spaces</subject><subject>Laplacians</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Nonlinear equations</subject><subject>Operator theory</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Recurrence relations</subject><subject>Root systems</subject><subject>Sciences and techniques of general use</subject><subject>Special functions</subject><subject>Wave functions</subject><subject>Wave packets</subject><subject>Weighting functions</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkM9LwzAYhoMoOKdHj0IQBD10fkmaJj1K_QkDhU08hjRNXUvXzqQ97L83ZWM7hS887_vCg9A1gRlhnD3qej2jAHwGQOgJmhCQECVMiFM0AQAapYyKc3ThfR1OEEAnKFsY3ffWVe0vXq5s57a4K_Fz5Y2zvcX3X94ORfeA53rTaFPp1uOuxRr_2G2Ds5Ve59ZdorNSN95e7d8p-n59WWbv0fzz7SN7mkeGJaSPZKINkzxmOSQiJalhueUC4kKAJAWzsmA0NbpMJegykRCT8F1QJgUDpvOcTdHtrnfjur_B-l7V3eDaMKkoS7ikKScBinaQcZ33zpZq46q1dltFQI2aVNCkRk1q1BT4u32p9kY3pdOtqfwxlAhIUhCBiw_jtTX9evD2uE8kpLFQi1H5aBw4hZgSHmI3u1jt-84damMYHQjO_gFlkH7C</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Van Diejen, J. F.</creator><general>Johns Hopkins University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7XB</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20050401</creationdate><title>Scattering Theory of Discrete (Pseudo) Laplacians on a Weyl Chamber</title><author>Van Diejen, J. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-86ac38543b067919c3be5704d7081d3e8d329caf980af6804181dd2387303abb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algebra</topic><topic>Calculus</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Exact sciences and technology</topic><topic>General theory of scattering</topic><topic>Hilbert spaces</topic><topic>Laplacians</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Nonlinear equations</topic><topic>Operator theory</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Recurrence relations</topic><topic>Root systems</topic><topic>Sciences and techniques of general use</topic><topic>Special functions</topic><topic>Wave functions</topic><topic>Wave packets</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Diejen, J. F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Diejen, J. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scattering Theory of Discrete (Pseudo) Laplacians on a Weyl Chamber</atitle><jtitle>American journal of mathematics</jtitle><date>2005-04-01</date><risdate>2005</risdate><volume>127</volume><issue>2</issue><spage>421</spage><epage>458</epage><pages>421-458</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><coden>AJMAAN</coden><abstract>To a crystallographic root system we associate a system of multivariate orthogonal polynomials diagonalizing an integrable system of discrete pseudo Laplacians on the Weyl chamber. We develop the time-dependent scattering theory for these discrete pseudo Laplacians and determine the corresponding wave operators and scattering operators in closed form. As an application, we describe the scattering behavior of certain hyperbolic Ruijsenaars-Schneider type lattice Calogero-Moser models associated with the Macdonald polynomials.</abstract><cop>Baltimore, MD</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.2005.0012</doi><tpages>38</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9327 |
ispartof | American journal of mathematics, 2005-04, Vol.127 (2), p.421-458 |
issn | 0002-9327 1080-6377 1080-6377 |
language | eng |
recordid | cdi_proquest_journals_236582951 |
source | Jstor Complete Legacy; Project MUSE - Premium Collection; JSTOR Mathematics & Statistics |
subjects | Algebra Calculus Classical and quantum physics: mechanics and fields Exact sciences and technology General theory of scattering Hilbert spaces Laplacians Mathematical analysis Mathematics Nonlinear equations Operator theory Physics Polynomials Recurrence relations Root systems Sciences and techniques of general use Special functions Wave functions Wave packets Weighting functions |
title | Scattering Theory of Discrete (Pseudo) Laplacians on a Weyl Chamber |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scattering%20Theory%20of%20Discrete%20(Pseudo)%20Laplacians%20on%20a%20Weyl%20Chamber&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Van%20Diejen,%20J.%20F.&rft.date=2005-04-01&rft.volume=127&rft.issue=2&rft.spage=421&rft.epage=458&rft.pages=421-458&rft.issn=0002-9327&rft.eissn=1080-6377&rft.coden=AJMAAN&rft_id=info:doi/10.1353/ajm.2005.0012&rft_dat=%3Cjstor_proqu%3E40067975%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236582951&rft_id=info:pmid/&rft_jstor_id=40067975&rfr_iscdi=true |