Scattering Theory of Discrete (Pseudo) Laplacians on a Weyl Chamber

To a crystallographic root system we associate a system of multivariate orthogonal polynomials diagonalizing an integrable system of discrete pseudo Laplacians on the Weyl chamber. We develop the time-dependent scattering theory for these discrete pseudo Laplacians and determine the corresponding wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2005-04, Vol.127 (2), p.421-458
1. Verfasser: Van Diejen, J. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 458
container_issue 2
container_start_page 421
container_title American journal of mathematics
container_volume 127
creator Van Diejen, J. F.
description To a crystallographic root system we associate a system of multivariate orthogonal polynomials diagonalizing an integrable system of discrete pseudo Laplacians on the Weyl chamber. We develop the time-dependent scattering theory for these discrete pseudo Laplacians and determine the corresponding wave operators and scattering operators in closed form. As an application, we describe the scattering behavior of certain hyperbolic Ruijsenaars-Schneider type lattice Calogero-Moser models associated with the Macdonald polynomials.
doi_str_mv 10.1353/ajm.2005.0012
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_236582951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40067975</jstor_id><sourcerecordid>40067975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-86ac38543b067919c3be5704d7081d3e8d329caf980af6804181dd2387303abb3</originalsourceid><addsrcrecordid>eNpFkM9LwzAYhoMoOKdHj0IQBD10fkmaJj1K_QkDhU08hjRNXUvXzqQ97L83ZWM7hS887_vCg9A1gRlhnD3qej2jAHwGQOgJmhCQECVMiFM0AQAapYyKc3ThfR1OEEAnKFsY3ffWVe0vXq5s57a4K_Fz5Y2zvcX3X94ORfeA53rTaFPp1uOuxRr_2G2Ds5Ve59ZdorNSN95e7d8p-n59WWbv0fzz7SN7mkeGJaSPZKINkzxmOSQiJalhueUC4kKAJAWzsmA0NbpMJegykRCT8F1QJgUDpvOcTdHtrnfjur_B-l7V3eDaMKkoS7ikKScBinaQcZ33zpZq46q1dltFQI2aVNCkRk1q1BT4u32p9kY3pdOtqfwxlAhIUhCBiw_jtTX9evD2uE8kpLFQi1H5aBw4hZgSHmI3u1jt-84damMYHQjO_gFlkH7C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236582951</pqid></control><display><type>article</type><title>Scattering Theory of Discrete (Pseudo) Laplacians on a Weyl Chamber</title><source>Jstor Complete Legacy</source><source>Project MUSE - Premium Collection</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Van Diejen, J. F.</creator><creatorcontrib>Van Diejen, J. F.</creatorcontrib><description>To a crystallographic root system we associate a system of multivariate orthogonal polynomials diagonalizing an integrable system of discrete pseudo Laplacians on the Weyl chamber. We develop the time-dependent scattering theory for these discrete pseudo Laplacians and determine the corresponding wave operators and scattering operators in closed form. As an application, we describe the scattering behavior of certain hyperbolic Ruijsenaars-Schneider type lattice Calogero-Moser models associated with the Macdonald polynomials.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.2005.0012</identifier><identifier>CODEN: AJMAAN</identifier><language>eng</language><publisher>Baltimore, MD: Johns Hopkins University Press</publisher><subject>Algebra ; Calculus ; Classical and quantum physics: mechanics and fields ; Exact sciences and technology ; General theory of scattering ; Hilbert spaces ; Laplacians ; Mathematical analysis ; Mathematics ; Nonlinear equations ; Operator theory ; Physics ; Polynomials ; Recurrence relations ; Root systems ; Sciences and techniques of general use ; Special functions ; Wave functions ; Wave packets ; Weighting functions</subject><ispartof>American journal of mathematics, 2005-04, Vol.127 (2), p.421-458</ispartof><rights>Copyright 2005 The Johns Hopkins University Press</rights><rights>Copyright © 2005 The Johns Hopkins University Press.</rights><rights>2005 INIST-CNRS</rights><rights>Copyright Johns Hopkins University Press Apr 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-86ac38543b067919c3be5704d7081d3e8d329caf980af6804181dd2387303abb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40067975$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40067975$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,21106,27901,27902,56817,57377,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16706907$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Diejen, J. F.</creatorcontrib><title>Scattering Theory of Discrete (Pseudo) Laplacians on a Weyl Chamber</title><title>American journal of mathematics</title><description>To a crystallographic root system we associate a system of multivariate orthogonal polynomials diagonalizing an integrable system of discrete pseudo Laplacians on the Weyl chamber. We develop the time-dependent scattering theory for these discrete pseudo Laplacians and determine the corresponding wave operators and scattering operators in closed form. As an application, we describe the scattering behavior of certain hyperbolic Ruijsenaars-Schneider type lattice Calogero-Moser models associated with the Macdonald polynomials.</description><subject>Algebra</subject><subject>Calculus</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Exact sciences and technology</subject><subject>General theory of scattering</subject><subject>Hilbert spaces</subject><subject>Laplacians</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Nonlinear equations</subject><subject>Operator theory</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Recurrence relations</subject><subject>Root systems</subject><subject>Sciences and techniques of general use</subject><subject>Special functions</subject><subject>Wave functions</subject><subject>Wave packets</subject><subject>Weighting functions</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkM9LwzAYhoMoOKdHj0IQBD10fkmaJj1K_QkDhU08hjRNXUvXzqQ97L83ZWM7hS887_vCg9A1gRlhnD3qej2jAHwGQOgJmhCQECVMiFM0AQAapYyKc3ThfR1OEEAnKFsY3ffWVe0vXq5s57a4K_Fz5Y2zvcX3X94ORfeA53rTaFPp1uOuxRr_2G2Ds5Ve59ZdorNSN95e7d8p-n59WWbv0fzz7SN7mkeGJaSPZKINkzxmOSQiJalhueUC4kKAJAWzsmA0NbpMJegykRCT8F1QJgUDpvOcTdHtrnfjur_B-l7V3eDaMKkoS7ikKScBinaQcZ33zpZq46q1dltFQI2aVNCkRk1q1BT4u32p9kY3pdOtqfwxlAhIUhCBiw_jtTX9evD2uE8kpLFQi1H5aBw4hZgSHmI3u1jt-84damMYHQjO_gFlkH7C</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Van Diejen, J. F.</creator><general>Johns Hopkins University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7XB</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20050401</creationdate><title>Scattering Theory of Discrete (Pseudo) Laplacians on a Weyl Chamber</title><author>Van Diejen, J. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-86ac38543b067919c3be5704d7081d3e8d329caf980af6804181dd2387303abb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algebra</topic><topic>Calculus</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Exact sciences and technology</topic><topic>General theory of scattering</topic><topic>Hilbert spaces</topic><topic>Laplacians</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Nonlinear equations</topic><topic>Operator theory</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Recurrence relations</topic><topic>Root systems</topic><topic>Sciences and techniques of general use</topic><topic>Special functions</topic><topic>Wave functions</topic><topic>Wave packets</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Diejen, J. F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Diejen, J. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scattering Theory of Discrete (Pseudo) Laplacians on a Weyl Chamber</atitle><jtitle>American journal of mathematics</jtitle><date>2005-04-01</date><risdate>2005</risdate><volume>127</volume><issue>2</issue><spage>421</spage><epage>458</epage><pages>421-458</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><coden>AJMAAN</coden><abstract>To a crystallographic root system we associate a system of multivariate orthogonal polynomials diagonalizing an integrable system of discrete pseudo Laplacians on the Weyl chamber. We develop the time-dependent scattering theory for these discrete pseudo Laplacians and determine the corresponding wave operators and scattering operators in closed form. As an application, we describe the scattering behavior of certain hyperbolic Ruijsenaars-Schneider type lattice Calogero-Moser models associated with the Macdonald polynomials.</abstract><cop>Baltimore, MD</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.2005.0012</doi><tpages>38</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9327
ispartof American journal of mathematics, 2005-04, Vol.127 (2), p.421-458
issn 0002-9327
1080-6377
1080-6377
language eng
recordid cdi_proquest_journals_236582951
source Jstor Complete Legacy; Project MUSE - Premium Collection; JSTOR Mathematics & Statistics
subjects Algebra
Calculus
Classical and quantum physics: mechanics and fields
Exact sciences and technology
General theory of scattering
Hilbert spaces
Laplacians
Mathematical analysis
Mathematics
Nonlinear equations
Operator theory
Physics
Polynomials
Recurrence relations
Root systems
Sciences and techniques of general use
Special functions
Wave functions
Wave packets
Weighting functions
title Scattering Theory of Discrete (Pseudo) Laplacians on a Weyl Chamber
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scattering%20Theory%20of%20Discrete%20(Pseudo)%20Laplacians%20on%20a%20Weyl%20Chamber&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Van%20Diejen,%20J.%20F.&rft.date=2005-04-01&rft.volume=127&rft.issue=2&rft.spage=421&rft.epage=458&rft.pages=421-458&rft.issn=0002-9327&rft.eissn=1080-6377&rft.coden=AJMAAN&rft_id=info:doi/10.1353/ajm.2005.0012&rft_dat=%3Cjstor_proqu%3E40067975%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236582951&rft_id=info:pmid/&rft_jstor_id=40067975&rfr_iscdi=true