Scattering Theory of Discrete (Pseudo) Laplacians on a Weyl Chamber

To a crystallographic root system we associate a system of multivariate orthogonal polynomials diagonalizing an integrable system of discrete pseudo Laplacians on the Weyl chamber. We develop the time-dependent scattering theory for these discrete pseudo Laplacians and determine the corresponding wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2005-04, Vol.127 (2), p.421-458
1. Verfasser: Van Diejen, J. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To a crystallographic root system we associate a system of multivariate orthogonal polynomials diagonalizing an integrable system of discrete pseudo Laplacians on the Weyl chamber. We develop the time-dependent scattering theory for these discrete pseudo Laplacians and determine the corresponding wave operators and scattering operators in closed form. As an application, we describe the scattering behavior of certain hyperbolic Ruijsenaars-Schneider type lattice Calogero-Moser models associated with the Macdonald polynomials.
ISSN:0002-9327
1080-6377
1080-6377
DOI:10.1353/ajm.2005.0012