Scattering Theory of Discrete (Pseudo) Laplacians on a Weyl Chamber
To a crystallographic root system we associate a system of multivariate orthogonal polynomials diagonalizing an integrable system of discrete pseudo Laplacians on the Weyl chamber. We develop the time-dependent scattering theory for these discrete pseudo Laplacians and determine the corresponding wa...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2005-04, Vol.127 (2), p.421-458 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To a crystallographic root system we associate a system of multivariate orthogonal polynomials diagonalizing an integrable system of discrete pseudo Laplacians on the Weyl chamber. We develop the time-dependent scattering theory for these discrete pseudo Laplacians and determine the corresponding wave operators and scattering operators in closed form. As an application, we describe the scattering behavior of certain hyperbolic Ruijsenaars-Schneider type lattice Calogero-Moser models associated with the Macdonald polynomials. |
---|---|
ISSN: | 0002-9327 1080-6377 1080-6377 |
DOI: | 10.1353/ajm.2005.0012 |