Origin of 1I/'Oumuamua. I. An Ejected Protoplanetary Disk Object?
1I/'Oumuamua is the first interstellar interloper to have been detected. Because planetesimal formation and ejection of predominantly icy objects are common by-products of the star and planet formation processes, in this study we address whether 1I/'Oumuamua could be representative of this...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2018-10, Vol.866 (2), p.131 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 1I/'Oumuamua is the first interstellar interloper to have been detected. Because planetesimal formation and ejection of predominantly icy objects are common by-products of the star and planet formation processes, in this study we address whether 1I/'Oumuamua could be representative of this background population of ejected objects. The purpose of the study of its origin is that it could provide information about the building blocks of planets in a size range that remains elusive to observations, helping to constrain planet formation models. We compare the mass density of interstellar objects inferred from its detection to that expected from planetesimal disks under two scenarios: circumstellar disks around single stars and wide binaries, and circumbinary disks around tight binaries. Our study makes use of a detailed study of the PanSTARRS survey volume; takes into account that the contribution from each star to the population of interstellar planetesimals depends on stellar mass, binarity, and planet presence; and explores a wide range of possible size distributions for the ejected planetesimals, based on solar system models and observations of its small-body population. We find that 1I/'Oumuamua is unlikely to be representative of a population of isotropically distributed objects, favoring the scenario that it originated from the planetesimal disk of a young nearby star whose remnants are highly anisotropic. Finally, we compare the fluxes of meteorites and micrometeorites observed on Earth to those inferred from this population of interstellar objects, concluding that it is unlikely that one of these objects is already part of the collected meteorite samples. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/aadf34 |