Cohomological Degrees and Hilbert Functions of Graded Modules

Making use of the recent construction of cohomological degrees functions, we give several estimates on the relationship between number of generators and degrees of ideals and modules with applications to Hilbert functions. They extend results heretofore known from generalized Cohen-Macaulay local ri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 1998-06, Vol.120 (3), p.493-504
Hauptverfasser: Doering, Luisa Rodrigues, Gunston, Tor, Vasconcelos, Wolmer V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Making use of the recent construction of cohomological degrees functions, we give several estimates on the relationship between number of generators and degrees of ideals and modules with applications to Hilbert functions. They extend results heretofore known from generalized Cohen-Macaulay local rings to nearly arbitrary local rings. The rules of computation these functions satisfy enables comparison with Castelnuovo-Mumford's regularity in the graded case. As application, we derive sharp improvements on predicting the outcome of effecting Noether normalizations in tangent cones.
ISSN:0002-9327
1080-6377
1080-6377
DOI:10.1353/ajm.1998.0019