Extended Structures of Planetary Nebulae Detected in H2 Emission

We present narrowband near-infrared images of a sample of 11 Galactic planetary nebulae (PNe) obtained in the H2 2.122 μm and Brγ 2.166 μm emission lines and the K c 2.218 μm continuum. These images were collected with the Wide-field Infrared Camera on the 3.6 m Canada–France–Hawaii Telescope (CFHT)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2018-06, Vol.859 (2)
Hauptverfasser: Fang, Xuan, Zhang, Yong, Sun, Kwok, Chih-Hao Hsia, Chau, Wayne, Ramos-Larios, Gerardo, Guerrero, Martín A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present narrowband near-infrared images of a sample of 11 Galactic planetary nebulae (PNe) obtained in the H2 2.122 μm and Brγ 2.166 μm emission lines and the K c 2.218 μm continuum. These images were collected with the Wide-field Infrared Camera on the 3.6 m Canada–France–Hawaii Telescope (CFHT); their unprecedented depth and wide field of view allow us to find extended nebular structures in H2 emission in several PNe, some of these being the first detection. The nebular morphologies in H2 emission are studied in analogy with the optical images, and indication of stellar wind interactions is discussed. In particular, the complete structure of the highly asymmetric halo in NGC 6772 is witnessed in H2, which strongly suggests interaction with the interstellar medium. Our sample confirms the general correlation between H2 emission and the bipolarity of PNe. The knotty or filamentary fine structures of the H2 gas are resolved in the inner regions of several ring-like PNe, also confirming the previous argument that H2 emission mostly comes from knots or clumps embedded within fully ionized material at the equatorial regions. Moreover, the H2 image of the butterfly-shaped Sh 1-89, after removal of field stars, clearly reveals a tilted ring structure at the waist. These high-quality CFHT images justify follow-up detailed morphokinematic studies that are desired in order to deduce the true physical structures of a few PNe in the sample.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/aac01e