Solar Active Region Heating Diagnostics from High-temperature Emission Using the MaGIXS

The relative amount of high-temperature plasma has been found to be a useful diagnostic to determine the frequency of coronal heating on sub-resolution structures. When the loops are infrequently heated, a broad emission measure (EM) over a wider range of temperatures is expected. A narrower EM is e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2019-10, Vol.884 (1), p.24
Hauptverfasser: Athiray, P. S., Winebarger, Amy R., Barnes, Will T., Bradshaw, Stephen J., Savage, Sabrina, Warren, Harry P., Kobayashi, Ken, Champey, Patrick, Golub, Leon, Glesener, Lindsay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The relative amount of high-temperature plasma has been found to be a useful diagnostic to determine the frequency of coronal heating on sub-resolution structures. When the loops are infrequently heated, a broad emission measure (EM) over a wider range of temperatures is expected. A narrower EM is expected for high-frequency heating where the loops are closer to equilibrium. The soft X-ray spectrum contains many spectral lines that provide high-temperature diagnostics, including lines from Fe xvii-xix. This region of the solar spectrum will be observed by the Marshall Grazing Incidence Spectrometer (MaGIXS) in 2020. In this paper, we derive the expected spectral line intensity in MaGIXS to varying amounts of high-temperature plasma to demonstrate that a simple line ratio provides a powerful diagnostic to determine the heating frequency. Similarly, we examine ratios of AIA channel intensities, filter ratios from a XRT, and energy bands from the FOXSI sounding rocket to determine their sensitivity to this parameter. We find that both FOXSI and MaGIXS provide good diagnostic capabilities for high-temperature plasma. We then compare the predicted line ratios to the output of a numerical model and confirm that the MaGIXS ratios provide an excellent diagnostic for heating frequency.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ab3eb4