Hidden in Plain Sight: A Massive, Dusty Starburst in a Galaxy Protocluster at z = 5.7 in the COSMOS Field

We report the serendipitous discovery of a dusty, starbursting galaxy at z = 5.667 (hereafter called CRLE) in close physical association with the "normal" main-sequence galaxy HZ10 at z = 5.654. CRLE was identified by detection of [C ii], [N ii], and CO(2-1) line emission, making it the hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2018-07, Vol.861 (1), p.43
Hauptverfasser: Pavesi, Riccardo, Riechers, Dominik A., Sharon, Chelsea E., Smol i, Vernesa, Faisst, Andreas L., Schinnerer, Eva, Carilli, Christopher L., Capak, Peter L., Scoville, Nick, Stacey, Gordon J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the serendipitous discovery of a dusty, starbursting galaxy at z = 5.667 (hereafter called CRLE) in close physical association with the "normal" main-sequence galaxy HZ10 at z = 5.654. CRLE was identified by detection of [C ii], [N ii], and CO(2-1) line emission, making it the highest-redshift, most luminous starburst in the COSMOS field. This massive, dusty galaxy appears to be forming stars at a rate of at least 1500 M yr−1 in a compact region only ∼3 kpc in diameter. The dynamical and dust emission properties of CRLE suggest an ongoing merger driving the starburst, which is in a potentially intermediate stage relative to other known dusty galaxies at the same epoch. The ratio of [C ii] to [N ii] may suggest that an important (∼15%) contribution to the [C ii] emission comes from a diffuse ionized gas component, which could be more extended than the dense, starbursting gas. CRLE appears to be located in a significant galaxy overdensity at the same redshift, potentially associated with a large-scale cosmic structure recently identified in a Lyman -emitter survey. This overdensity suggests that CRLE and HZ10 reside in a protocluster environment, offering the tantalizing opportunity to study the effect of a massive starburst on protocluster star formation. Our findings support the interpretation that a significant fraction of the earliest galaxy formation may occur from the inside out, within the central regions of the most massive halos, while rapidly evolving into the massive galaxy clusters observed in the local universe.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/aac6b6