The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta
We present optical and ultraviolet spectra of the first electromagnetic counterpart to a gravitational-wave (GW) source, the binary neutron star merger GW170817. Spectra were obtained nightly between 1.5 and 9.5 days post-merger, using the Southern Astrophysical Research and Magellan telescopes; the...
Gespeichert in:
Veröffentlicht in: | Astrophysical journal. Letters 2017-10, Vol.848 (2), p.L18 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present optical and ultraviolet spectra of the first electromagnetic counterpart to a gravitational-wave (GW) source, the binary neutron star merger GW170817. Spectra were obtained nightly between 1.5 and 9.5 days post-merger, using the Southern Astrophysical Research and Magellan telescopes; the UV spectrum was obtained with the Hubble Space Telescope at 5.5 days. Our data reveal a rapidly fading blue component ( T 5500 K at 1.5 days) that quickly reddens; spectra later than 4.5 days peak beyond the optical regime. The spectra are mostly featureless, although we identify a possible weak emission line at ∼7900 at t 4.5 days. The colors, rapid evolution, and featureless spectrum are consistent with a "blue" kilonova from polar ejecta comprised mainly of light r-process nuclei with atomic mass number A 140 . This indicates a sightline within θ obs 45 ° of the orbital axis. Comparison to models suggests ∼0.03 M of blue ejecta, with a velocity of ∼ 0.3 c . The required lanthanide fraction is ∼ 10 − 4 , but this drops to < 10 − 5 in the outermost ejecta. The large velocities point to a dynamical origin, rather than a disk wind, for this blue component, suggesting that both binary constituents are neutron stars (as opposed to a binary consisting of a neutron star and a black hole). For dynamical ejecta, the high mass favors a small neutron star radius of 12 km. This mass also supports the idea that neutron star mergers are a major contributor to r-process nucleosynthesis. |
---|---|
ISSN: | 2041-8205 2041-8213 2041-8213 |
DOI: | 10.3847/2041-8213/aa9029 |