Metric Spaces with Linear Extensions Preserving Lipschitz Condition
We study a new bi-Lipschitz invariant λ(M) of a metric space M; its finiteness means that Lipschitz functions on an arbitrary subset of M can be linearly extended to functions on M whose Lipschitz constants are expanded by a factor controlled by λ(M). We prove that λ(M) is finite for several importa...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2007-02, Vol.129 (1), p.217-314 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 314 |
---|---|
container_issue | 1 |
container_start_page | 217 |
container_title | American journal of mathematics |
container_volume | 129 |
creator | Brudnyi, Alexander Brudnyi, Yuri |
description | We study a new bi-Lipschitz invariant λ(M) of a metric space M; its finiteness means that Lipschitz functions on an arbitrary subset of M can be linearly extended to functions on M whose Lipschitz constants are expanded by a factor controlled by λ(M). We prove that λ(M) is finite for several important classes of metric spaces. These include metric trees of arbitrary cardinality, groups of polynomial growth, Gromov-hyperbolic groups, certain classes of Riemannian manifolds of bounded geometry and the finite direct sums of arbitrary combinations of these objects. On the other hand we construct an example of a two-dimensional Riemannian manifold M of bounded geometry for which λ(M) = ∞. |
doi_str_mv | 10.1353/ajm.2007.0000 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_236559292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40068052</jstor_id><sourcerecordid>40068052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-2dde90222ed9a41f057f009358ed0453db0da3e043d3cd258761641f0f7e4e613</originalsourceid><addsrcrecordid>eNpNkEtLAzEQx4MoWKtHj8IieNw6STab3aMUX1BRUM8hJrOapd2tSerr05ulpTqXgZn_A36EHFOYUC74uW4XEwYgJ5Bmh4woVJCXXMpdMkoXltecyX1yEEI7KCSwEZneYfTOZI9LbTBkny6-ZTPXofbZ5VfELri-C9mDx4D-w3Wv6bkM5s3Fn2zad9bF9D8ke42eBzza7DF5vrp8mt7ks_vr2-nFLDe8pDFn1mINjDG0tS5oA0I2ADUXFVooBLcvYDVHKLjlxjJRyZKWg66RWGBJ-ZicrnOXvn9fYYiq7Ve-S5WK8VKImtUsifK1yPg-BI-NWnq30P5bUVADJpUwqQGTGiAk_dkmVAej543XnXHhz1SJouDJNibFtrxFExergP_6KdCSqscB-UAcJAVGJU-2k7WtDbH329gCoKxAMP4LkPeAXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236559292</pqid></control><display><type>article</type><title>Metric Spaces with Linear Extensions Preserving Lipschitz Condition</title><source>Project Muse Premium Collection</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Brudnyi, Alexander ; Brudnyi, Yuri</creator><creatorcontrib>Brudnyi, Alexander ; Brudnyi, Yuri</creatorcontrib><description>We study a new bi-Lipschitz invariant λ(M) of a metric space M; its finiteness means that Lipschitz functions on an arbitrary subset of M can be linearly extended to functions on M whose Lipschitz constants are expanded by a factor controlled by λ(M). We prove that λ(M) is finite for several important classes of metric spaces. These include metric trees of arbitrary cardinality, groups of polynomial growth, Gromov-hyperbolic groups, certain classes of Riemannian manifolds of bounded geometry and the finite direct sums of arbitrary combinations of these objects. On the other hand we construct an example of a two-dimensional Riemannian manifold M of bounded geometry for which λ(M) = ∞.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.2007.0000</identifier><identifier>CODEN: AJMAAN</identifier><language>eng</language><publisher>Baltimore, MD: Johns Hopkins University Press</publisher><subject>Banach space ; Coordinate systems ; Curvature ; Exact sciences and technology ; Functional analysis ; General topology ; Geometry ; Linear transformations ; Mathematical analysis ; Mathematical functions ; Mathematical problems ; Mathematical theorems ; Mathematics ; Real functions ; Riemann manifold ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds ; Vertices</subject><ispartof>American journal of mathematics, 2007-02, Vol.129 (1), p.217-314</ispartof><rights>Copyright 2007 The Johns Hopkins University Press</rights><rights>Copyright © 2007 The Johns Hopkins University Press.</rights><rights>2007 INIST-CNRS</rights><rights>Copyright Johns Hopkins University Press Feb 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-2dde90222ed9a41f057f009358ed0453db0da3e043d3cd258761641f0f7e4e613</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40068052$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40068052$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,21127,27924,27925,56842,57402,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18544335$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Brudnyi, Alexander</creatorcontrib><creatorcontrib>Brudnyi, Yuri</creatorcontrib><title>Metric Spaces with Linear Extensions Preserving Lipschitz Condition</title><title>American journal of mathematics</title><description>We study a new bi-Lipschitz invariant λ(M) of a metric space M; its finiteness means that Lipschitz functions on an arbitrary subset of M can be linearly extended to functions on M whose Lipschitz constants are expanded by a factor controlled by λ(M). We prove that λ(M) is finite for several important classes of metric spaces. These include metric trees of arbitrary cardinality, groups of polynomial growth, Gromov-hyperbolic groups, certain classes of Riemannian manifolds of bounded geometry and the finite direct sums of arbitrary combinations of these objects. On the other hand we construct an example of a two-dimensional Riemannian manifold M of bounded geometry for which λ(M) = ∞.</description><subject>Banach space</subject><subject>Coordinate systems</subject><subject>Curvature</subject><subject>Exact sciences and technology</subject><subject>Functional analysis</subject><subject>General topology</subject><subject>Geometry</subject><subject>Linear transformations</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematical problems</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Real functions</subject><subject>Riemann manifold</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><subject>Vertices</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNkEtLAzEQx4MoWKtHj8IieNw6STab3aMUX1BRUM8hJrOapd2tSerr05ulpTqXgZn_A36EHFOYUC74uW4XEwYgJ5Bmh4woVJCXXMpdMkoXltecyX1yEEI7KCSwEZneYfTOZI9LbTBkny6-ZTPXofbZ5VfELri-C9mDx4D-w3Wv6bkM5s3Fn2zad9bF9D8ke42eBzza7DF5vrp8mt7ks_vr2-nFLDe8pDFn1mINjDG0tS5oA0I2ADUXFVooBLcvYDVHKLjlxjJRyZKWg66RWGBJ-ZicrnOXvn9fYYiq7Ve-S5WK8VKImtUsifK1yPg-BI-NWnq30P5bUVADJpUwqQGTGiAk_dkmVAej543XnXHhz1SJouDJNibFtrxFExergP_6KdCSqscB-UAcJAVGJU-2k7WtDbH329gCoKxAMP4LkPeAXg</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Brudnyi, Alexander</creator><creator>Brudnyi, Yuri</creator><general>Johns Hopkins University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7XB</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20070201</creationdate><title>Metric Spaces with Linear Extensions Preserving Lipschitz Condition</title><author>Brudnyi, Alexander ; Brudnyi, Yuri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-2dde90222ed9a41f057f009358ed0453db0da3e043d3cd258761641f0f7e4e613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Banach space</topic><topic>Coordinate systems</topic><topic>Curvature</topic><topic>Exact sciences and technology</topic><topic>Functional analysis</topic><topic>General topology</topic><topic>Geometry</topic><topic>Linear transformations</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematical problems</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Real functions</topic><topic>Riemann manifold</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brudnyi, Alexander</creatorcontrib><creatorcontrib>Brudnyi, Yuri</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brudnyi, Alexander</au><au>Brudnyi, Yuri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metric Spaces with Linear Extensions Preserving Lipschitz Condition</atitle><jtitle>American journal of mathematics</jtitle><date>2007-02-01</date><risdate>2007</risdate><volume>129</volume><issue>1</issue><spage>217</spage><epage>314</epage><pages>217-314</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><coden>AJMAAN</coden><abstract>We study a new bi-Lipschitz invariant λ(M) of a metric space M; its finiteness means that Lipschitz functions on an arbitrary subset of M can be linearly extended to functions on M whose Lipschitz constants are expanded by a factor controlled by λ(M). We prove that λ(M) is finite for several important classes of metric spaces. These include metric trees of arbitrary cardinality, groups of polynomial growth, Gromov-hyperbolic groups, certain classes of Riemannian manifolds of bounded geometry and the finite direct sums of arbitrary combinations of these objects. On the other hand we construct an example of a two-dimensional Riemannian manifold M of bounded geometry for which λ(M) = ∞.</abstract><cop>Baltimore, MD</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.2007.0000</doi><tpages>98</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9327 |
ispartof | American journal of mathematics, 2007-02, Vol.129 (1), p.217-314 |
issn | 0002-9327 1080-6377 1080-6377 |
language | eng |
recordid | cdi_proquest_journals_236559292 |
source | Project Muse Premium Collection; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Banach space Coordinate systems Curvature Exact sciences and technology Functional analysis General topology Geometry Linear transformations Mathematical analysis Mathematical functions Mathematical problems Mathematical theorems Mathematics Real functions Riemann manifold Sciences and techniques of general use Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds Vertices |
title | Metric Spaces with Linear Extensions Preserving Lipschitz Condition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A22%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metric%20Spaces%20with%20Linear%20Extensions%20Preserving%20Lipschitz%20Condition&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Brudnyi,%20Alexander&rft.date=2007-02-01&rft.volume=129&rft.issue=1&rft.spage=217&rft.epage=314&rft.pages=217-314&rft.issn=0002-9327&rft.eissn=1080-6377&rft.coden=AJMAAN&rft_id=info:doi/10.1353/ajm.2007.0000&rft_dat=%3Cjstor_proqu%3E40068052%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236559292&rft_id=info:pmid/&rft_jstor_id=40068052&rfr_iscdi=true |