Metric Spaces with Linear Extensions Preserving Lipschitz Condition

We study a new bi-Lipschitz invariant λ(M) of a metric space M; its finiteness means that Lipschitz functions on an arbitrary subset of M can be linearly extended to functions on M whose Lipschitz constants are expanded by a factor controlled by λ(M). We prove that λ(M) is finite for several importa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2007-02, Vol.129 (1), p.217-314
Hauptverfasser: Brudnyi, Alexander, Brudnyi, Yuri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 314
container_issue 1
container_start_page 217
container_title American journal of mathematics
container_volume 129
creator Brudnyi, Alexander
Brudnyi, Yuri
description We study a new bi-Lipschitz invariant λ(M) of a metric space M; its finiteness means that Lipschitz functions on an arbitrary subset of M can be linearly extended to functions on M whose Lipschitz constants are expanded by a factor controlled by λ(M). We prove that λ(M) is finite for several important classes of metric spaces. These include metric trees of arbitrary cardinality, groups of polynomial growth, Gromov-hyperbolic groups, certain classes of Riemannian manifolds of bounded geometry and the finite direct sums of arbitrary combinations of these objects. On the other hand we construct an example of a two-dimensional Riemannian manifold M of bounded geometry for which λ(M) = ∞.
doi_str_mv 10.1353/ajm.2007.0000
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_236559292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40068052</jstor_id><sourcerecordid>40068052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-2dde90222ed9a41f057f009358ed0453db0da3e043d3cd258761641f0f7e4e613</originalsourceid><addsrcrecordid>eNpNkEtLAzEQx4MoWKtHj8IieNw6STab3aMUX1BRUM8hJrOapd2tSerr05ulpTqXgZn_A36EHFOYUC74uW4XEwYgJ5Bmh4woVJCXXMpdMkoXltecyX1yEEI7KCSwEZneYfTOZI9LbTBkny6-ZTPXofbZ5VfELri-C9mDx4D-w3Wv6bkM5s3Fn2zad9bF9D8ke42eBzza7DF5vrp8mt7ks_vr2-nFLDe8pDFn1mINjDG0tS5oA0I2ADUXFVooBLcvYDVHKLjlxjJRyZKWg66RWGBJ-ZicrnOXvn9fYYiq7Ve-S5WK8VKImtUsifK1yPg-BI-NWnq30P5bUVADJpUwqQGTGiAk_dkmVAej543XnXHhz1SJouDJNibFtrxFExergP_6KdCSqscB-UAcJAVGJU-2k7WtDbH329gCoKxAMP4LkPeAXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236559292</pqid></control><display><type>article</type><title>Metric Spaces with Linear Extensions Preserving Lipschitz Condition</title><source>Project Muse Premium Collection</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Brudnyi, Alexander ; Brudnyi, Yuri</creator><creatorcontrib>Brudnyi, Alexander ; Brudnyi, Yuri</creatorcontrib><description>We study a new bi-Lipschitz invariant λ(M) of a metric space M; its finiteness means that Lipschitz functions on an arbitrary subset of M can be linearly extended to functions on M whose Lipschitz constants are expanded by a factor controlled by λ(M). We prove that λ(M) is finite for several important classes of metric spaces. These include metric trees of arbitrary cardinality, groups of polynomial growth, Gromov-hyperbolic groups, certain classes of Riemannian manifolds of bounded geometry and the finite direct sums of arbitrary combinations of these objects. On the other hand we construct an example of a two-dimensional Riemannian manifold M of bounded geometry for which λ(M) = ∞.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.2007.0000</identifier><identifier>CODEN: AJMAAN</identifier><language>eng</language><publisher>Baltimore, MD: Johns Hopkins University Press</publisher><subject>Banach space ; Coordinate systems ; Curvature ; Exact sciences and technology ; Functional analysis ; General topology ; Geometry ; Linear transformations ; Mathematical analysis ; Mathematical functions ; Mathematical problems ; Mathematical theorems ; Mathematics ; Real functions ; Riemann manifold ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds ; Vertices</subject><ispartof>American journal of mathematics, 2007-02, Vol.129 (1), p.217-314</ispartof><rights>Copyright 2007 The Johns Hopkins University Press</rights><rights>Copyright © 2007 The Johns Hopkins University Press.</rights><rights>2007 INIST-CNRS</rights><rights>Copyright Johns Hopkins University Press Feb 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-2dde90222ed9a41f057f009358ed0453db0da3e043d3cd258761641f0f7e4e613</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40068052$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40068052$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,21127,27924,27925,56842,57402,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18544335$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Brudnyi, Alexander</creatorcontrib><creatorcontrib>Brudnyi, Yuri</creatorcontrib><title>Metric Spaces with Linear Extensions Preserving Lipschitz Condition</title><title>American journal of mathematics</title><description>We study a new bi-Lipschitz invariant λ(M) of a metric space M; its finiteness means that Lipschitz functions on an arbitrary subset of M can be linearly extended to functions on M whose Lipschitz constants are expanded by a factor controlled by λ(M). We prove that λ(M) is finite for several important classes of metric spaces. These include metric trees of arbitrary cardinality, groups of polynomial growth, Gromov-hyperbolic groups, certain classes of Riemannian manifolds of bounded geometry and the finite direct sums of arbitrary combinations of these objects. On the other hand we construct an example of a two-dimensional Riemannian manifold M of bounded geometry for which λ(M) = ∞.</description><subject>Banach space</subject><subject>Coordinate systems</subject><subject>Curvature</subject><subject>Exact sciences and technology</subject><subject>Functional analysis</subject><subject>General topology</subject><subject>Geometry</subject><subject>Linear transformations</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematical problems</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Real functions</subject><subject>Riemann manifold</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><subject>Vertices</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNkEtLAzEQx4MoWKtHj8IieNw6STab3aMUX1BRUM8hJrOapd2tSerr05ulpTqXgZn_A36EHFOYUC74uW4XEwYgJ5Bmh4woVJCXXMpdMkoXltecyX1yEEI7KCSwEZneYfTOZI9LbTBkny6-ZTPXofbZ5VfELri-C9mDx4D-w3Wv6bkM5s3Fn2zad9bF9D8ke42eBzza7DF5vrp8mt7ks_vr2-nFLDe8pDFn1mINjDG0tS5oA0I2ADUXFVooBLcvYDVHKLjlxjJRyZKWg66RWGBJ-ZicrnOXvn9fYYiq7Ve-S5WK8VKImtUsifK1yPg-BI-NWnq30P5bUVADJpUwqQGTGiAk_dkmVAej543XnXHhz1SJouDJNibFtrxFExergP_6KdCSqscB-UAcJAVGJU-2k7WtDbH329gCoKxAMP4LkPeAXg</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Brudnyi, Alexander</creator><creator>Brudnyi, Yuri</creator><general>Johns Hopkins University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7XB</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20070201</creationdate><title>Metric Spaces with Linear Extensions Preserving Lipschitz Condition</title><author>Brudnyi, Alexander ; Brudnyi, Yuri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-2dde90222ed9a41f057f009358ed0453db0da3e043d3cd258761641f0f7e4e613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Banach space</topic><topic>Coordinate systems</topic><topic>Curvature</topic><topic>Exact sciences and technology</topic><topic>Functional analysis</topic><topic>General topology</topic><topic>Geometry</topic><topic>Linear transformations</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematical problems</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Real functions</topic><topic>Riemann manifold</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brudnyi, Alexander</creatorcontrib><creatorcontrib>Brudnyi, Yuri</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brudnyi, Alexander</au><au>Brudnyi, Yuri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metric Spaces with Linear Extensions Preserving Lipschitz Condition</atitle><jtitle>American journal of mathematics</jtitle><date>2007-02-01</date><risdate>2007</risdate><volume>129</volume><issue>1</issue><spage>217</spage><epage>314</epage><pages>217-314</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><coden>AJMAAN</coden><abstract>We study a new bi-Lipschitz invariant λ(M) of a metric space M; its finiteness means that Lipschitz functions on an arbitrary subset of M can be linearly extended to functions on M whose Lipschitz constants are expanded by a factor controlled by λ(M). We prove that λ(M) is finite for several important classes of metric spaces. These include metric trees of arbitrary cardinality, groups of polynomial growth, Gromov-hyperbolic groups, certain classes of Riemannian manifolds of bounded geometry and the finite direct sums of arbitrary combinations of these objects. On the other hand we construct an example of a two-dimensional Riemannian manifold M of bounded geometry for which λ(M) = ∞.</abstract><cop>Baltimore, MD</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.2007.0000</doi><tpages>98</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9327
ispartof American journal of mathematics, 2007-02, Vol.129 (1), p.217-314
issn 0002-9327
1080-6377
1080-6377
language eng
recordid cdi_proquest_journals_236559292
source Project Muse Premium Collection; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Banach space
Coordinate systems
Curvature
Exact sciences and technology
Functional analysis
General topology
Geometry
Linear transformations
Mathematical analysis
Mathematical functions
Mathematical problems
Mathematical theorems
Mathematics
Real functions
Riemann manifold
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Vertices
title Metric Spaces with Linear Extensions Preserving Lipschitz Condition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A22%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metric%20Spaces%20with%20Linear%20Extensions%20Preserving%20Lipschitz%20Condition&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Brudnyi,%20Alexander&rft.date=2007-02-01&rft.volume=129&rft.issue=1&rft.spage=217&rft.epage=314&rft.pages=217-314&rft.issn=0002-9327&rft.eissn=1080-6377&rft.coden=AJMAAN&rft_id=info:doi/10.1353/ajm.2007.0000&rft_dat=%3Cjstor_proqu%3E40068052%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236559292&rft_id=info:pmid/&rft_jstor_id=40068052&rfr_iscdi=true