Metric Spaces with Linear Extensions Preserving Lipschitz Condition

We study a new bi-Lipschitz invariant λ(M) of a metric space M; its finiteness means that Lipschitz functions on an arbitrary subset of M can be linearly extended to functions on M whose Lipschitz constants are expanded by a factor controlled by λ(M). We prove that λ(M) is finite for several importa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2007-02, Vol.129 (1), p.217-314
Hauptverfasser: Brudnyi, Alexander, Brudnyi, Yuri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a new bi-Lipschitz invariant λ(M) of a metric space M; its finiteness means that Lipschitz functions on an arbitrary subset of M can be linearly extended to functions on M whose Lipschitz constants are expanded by a factor controlled by λ(M). We prove that λ(M) is finite for several important classes of metric spaces. These include metric trees of arbitrary cardinality, groups of polynomial growth, Gromov-hyperbolic groups, certain classes of Riemannian manifolds of bounded geometry and the finite direct sums of arbitrary combinations of these objects. On the other hand we construct an example of a two-dimensional Riemannian manifold M of bounded geometry for which λ(M) = ∞.
ISSN:0002-9327
1080-6377
1080-6377
DOI:10.1353/ajm.2007.0000