The Bousfield-Kan Spectral Sequence for Periodic Homology Theories
We construct the Bousfield-Kan (unstable Adams) spectral sequence based on certain nonconnective periodic homology theories E such as complex periodic K-theory, and define an E-completion of a space X. For$X=S^{2n+1}$and E = K we calculate the${\rm E}_{2}$-term and show that the spectral sequence co...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2000-06, Vol.122 (3), p.599-635 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct the Bousfield-Kan (unstable Adams) spectral sequence based on certain nonconnective periodic homology theories E such as complex periodic K-theory, and define an E-completion of a space X. For$X=S^{2n+1}$and E = K we calculate the${\rm E}_{2}$-term and show that the spectral sequence converges to the homotopy groups of the K-completion of the sphere. This also determines all of the homotopy groups of the (unstable) K-theory localization of$S^{2n+1}$including three divisible groups in negative stems. |
---|---|
ISSN: | 0002-9327 1080-6377 1080-6377 |
DOI: | 10.1353/ajm.2000.0015 |