The Bousfield-Kan Spectral Sequence for Periodic Homology Theories

We construct the Bousfield-Kan (unstable Adams) spectral sequence based on certain nonconnective periodic homology theories E such as complex periodic K-theory, and define an E-completion of a space X. For$X=S^{2n+1}$and E = K we calculate the${\rm E}_{2}$-term and show that the spectral sequence co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2000-06, Vol.122 (3), p.599-635
Hauptverfasser: Bendersky, Martin, Thompson, Robert D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct the Bousfield-Kan (unstable Adams) spectral sequence based on certain nonconnective periodic homology theories E such as complex periodic K-theory, and define an E-completion of a space X. For$X=S^{2n+1}$and E = K we calculate the${\rm E}_{2}$-term and show that the spectral sequence converges to the homotopy groups of the K-completion of the sphere. This also determines all of the homotopy groups of the (unstable) K-theory localization of$S^{2n+1}$including three divisible groups in negative stems.
ISSN:0002-9327
1080-6377
1080-6377
DOI:10.1353/ajm.2000.0015