Torus cannot collapse to a segment
In earlier work, we analyzed the impossibility of codimension-one collapse for surfaces of negative Euler characteristic under the condition of a lower bound for the Gaussian curvature. Here we show that, under similar conditions, the torus cannot collapse to a segment. Unlike the torus, the Klein b...
Gespeichert in:
Veröffentlicht in: | Journal of geometry 2020-04, Vol.111 (1), Article 13 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In earlier work, we analyzed the impossibility of codimension-one collapse for surfaces of negative Euler characteristic under the condition of a lower bound for the Gaussian curvature. Here we show that, under similar conditions, the torus cannot collapse to a segment. Unlike the torus, the Klein bottle can collapse to a segment; we show that in such a situation, the loops in a short basis for homology must stay a uniform distance apart. |
---|---|
ISSN: | 0047-2468 1420-8997 |
DOI: | 10.1007/s00022-020-0525-8 |