Torus cannot collapse to a segment

In earlier work, we analyzed the impossibility of codimension-one collapse for surfaces of negative Euler characteristic under the condition of a lower bound for the Gaussian curvature. Here we show that, under similar conditions, the torus cannot collapse to a segment. Unlike the torus, the Klein b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geometry 2020-04, Vol.111 (1), Article 13
1. Verfasser: Katz, Mikhail G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In earlier work, we analyzed the impossibility of codimension-one collapse for surfaces of negative Euler characteristic under the condition of a lower bound for the Gaussian curvature. Here we show that, under similar conditions, the torus cannot collapse to a segment. Unlike the torus, the Klein bottle can collapse to a segment; we show that in such a situation, the loops in a short basis for homology must stay a uniform distance apart.
ISSN:0047-2468
1420-8997
DOI:10.1007/s00022-020-0525-8