L2-decay rate for the critical nonlinear Schrödinger equation with a small smooth data

We consider the Cauchy problem for the one dimensional nonlinear dissipative Schrödinger equation with a cubic nonlinearity λ | u | 2 u , where λ ∈ C with Im  λ < 0 . We show that a relation between L 2 -decay rate for the solution and a smoothness of the initial data. Our result improves the rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear differential equations and applications 2020, Vol.27 (2)
Hauptverfasser: Ogawa, Takayoshi, Sato, Takuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the Cauchy problem for the one dimensional nonlinear dissipative Schrödinger equation with a cubic nonlinearity λ | u | 2 u , where λ ∈ C with Im  λ < 0 . We show that a relation between L 2 -decay rate for the solution and a smoothness of the initial data. Our result improves the recent work of Hayashi–Li–Naumkin (Adv Math Phys Art. ID 3702738, 7, 2016) for the decay rate of L 2 .
ISSN:1021-9722
1420-9004
DOI:10.1007/s00030-020-0621-3