L2-decay rate for the critical nonlinear Schrödinger equation with a small smooth data
We consider the Cauchy problem for the one dimensional nonlinear dissipative Schrödinger equation with a cubic nonlinearity λ | u | 2 u , where λ ∈ C with Im λ < 0 . We show that a relation between L 2 -decay rate for the solution and a smoothness of the initial data. Our result improves the rec...
Gespeichert in:
Veröffentlicht in: | Nonlinear differential equations and applications 2020, Vol.27 (2) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the Cauchy problem for the one dimensional nonlinear dissipative Schrödinger equation with a cubic nonlinearity
λ
|
u
|
2
u
, where
λ
∈
C
with Im
λ
<
0
. We show that a relation between
L
2
-decay rate for the solution and a smoothness of the initial data. Our result improves the recent work of Hayashi–Li–Naumkin (Adv Math Phys Art. ID 3702738, 7, 2016) for the decay rate of
L
2
. |
---|---|
ISSN: | 1021-9722 1420-9004 |
DOI: | 10.1007/s00030-020-0621-3 |