Arithmetic Multivariate Descartes' Rule
Let L be any number field or p-adic field and consider F:=(f1,...,fk) where f1,...,fk ΕL[x1, . . . ,xn] and no more than µ, distinct exponent vectors occur in the monomial term expansions of the fi. We prove that F has no more than${\rm{1 + }}\left( {{\rm{Cn(\mu - n)}}^{\rm{3}} {\rm{log(\mu - n)}}}...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2004-02, Vol.126 (1), p.1-30 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let L be any number field or p-adic field and consider F:=(f1,...,fk) where f1,...,fk ΕL[x1, . . . ,xn] and no more than µ, distinct exponent vectors occur in the monomial term expansions of the fi. We prove that F has no more than${\rm{1 + }}\left( {{\rm{Cn(\mu - n)}}^{\rm{3}} {\rm{log(\mu - n)}}} \right)^{\rm{n}} $geometrically isolated roots in$L^{\rm{n}} $, where C is an explicit and effectively computable constant depending only on L. This gives a significantly sharper arithmetic analogue of Khovanski's Theorem on Real Fewnomials and a higher-dimensional generalization of an earlier result of Hendrik W. Lenstra, Jr. for the special case of a single univariate polynomial. We also present some further refinements of our new bounds and a higher-dimensional generalization of a bound of Lipshitz on p-adic complex roots. Connections to non-Archimedean amoebae and computational complexity (including additive complexity and solving for the geometrically isolated rational roots) are discussed along the way. We thus provide the foundations for an effective arithmetic analogue of fewnomial theory. |
---|---|
ISSN: | 0002-9327 1080-6377 1080-6377 |
DOI: | 10.1353/ajm.2004.0005 |