Arithmetic Multivariate Descartes' Rule

Let L be any number field or p-adic field and consider F:=(f1,...,fk) where f1,...,fk ΕL[x1, . . . ,xn] and no more than µ, distinct exponent vectors occur in the monomial term expansions of the fi. We prove that F has no more than${\rm{1 + }}\left( {{\rm{Cn(\mu - n)}}^{\rm{3}} {\rm{log(\mu - n)}}}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2004-02, Vol.126 (1), p.1-30
1. Verfasser: Rojas, J. Maurice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let L be any number field or p-adic field and consider F:=(f1,...,fk) where f1,...,fk ΕL[x1, . . . ,xn] and no more than µ, distinct exponent vectors occur in the monomial term expansions of the fi. We prove that F has no more than${\rm{1 + }}\left( {{\rm{Cn(\mu - n)}}^{\rm{3}} {\rm{log(\mu - n)}}} \right)^{\rm{n}} $geometrically isolated roots in$L^{\rm{n}} $, where C is an explicit and effectively computable constant depending only on L. This gives a significantly sharper arithmetic analogue of Khovanski's Theorem on Real Fewnomials and a higher-dimensional generalization of an earlier result of Hendrik W. Lenstra, Jr. for the special case of a single univariate polynomial. We also present some further refinements of our new bounds and a higher-dimensional generalization of a bound of Lipshitz on p-adic complex roots. Connections to non-Archimedean amoebae and computational complexity (including additive complexity and solving for the geometrically isolated rational roots) are discussed along the way. We thus provide the foundations for an effective arithmetic analogue of fewnomial theory.
ISSN:0002-9327
1080-6377
1080-6377
DOI:10.1353/ajm.2004.0005