Realizing Enveloping Algebras via Varieties of Modules
By using the Ringel-Hall algebra approach, we investigate the structure of the Lie algebra L(A) generated by indecomposable constructible sets in the varieties of modules for any finite- dimensional C-algebra A. We obtain a geometric realization of the universal enveloping algebra R(A) of L(A), this...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2010, Vol.26 (1), p.29-48 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By using the Ringel-Hall algebra approach, we investigate the structure of the Lie algebra L(A) generated by indecomposable constructible sets in the varieties of modules for any finite- dimensional C-algebra A. We obtain a geometric realization of the universal enveloping algebra R(A) of L(A), this generalizes the main result of Riedtmann. We also obtain Green's formula in a geometric form for any finite-dimensional C-algebra A and use it to give the comultiplication formula in R(A). |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-010-9070-y |