Room-temperature dissolution and chemical modification of cellulose in aqueous tetraethylammonium hydroxide–carbamide solutions
The room-temperature dissolution of cellulose in aqueous tetraethylammonium hydroxide (TEAOH) in the presence of carbamides (ureas) was investigated. Without carbamide, 35 wt% TEAOH was able to dissolve cellulose (microcrystalline cellulose) up to 3 wt%, whereas carbamides—such as urea, N -methylure...
Gespeichert in:
Veröffentlicht in: | Cellulose (London) 2020-03, Vol.27 (4), p.1933-1950 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The room-temperature dissolution of cellulose in aqueous tetraethylammonium hydroxide (TEAOH) in the presence of carbamides (ureas) was investigated. Without carbamide, 35 wt% TEAOH was able to dissolve cellulose (microcrystalline cellulose) up to 3 wt%, whereas carbamides—such as urea,
N
-methylurea,
N
-ethylurea, 1,3-dimethylurea, and imidazolidone—were able to improve the dissolution of cellulose. At 5 wt% cellulose concentration, the highest carbamide contents in the solvent still able to dissolve cellulose within 1 h were 56 and 55 wt% of 1,3-dimethylurea and
N
-methylurea, respectively. When using urea, up to 15% of cellulose could be dissolved in a solution containing 22 wt% of urea. To demonstrate the possibility of the use of a carbamide-based solvent in cellulose modification, cationic cellulose was produced using glycidyltrimethylammonium chloride (GTAC). At a molar ratio of 1:3 of cellulose and GTAC, all the studied TEAOH–carbamide solvents produce cationic cellulose with higher charge density compared to the reference NaOH–urea solvent. |
---|---|
ISSN: | 0969-0239 1572-882X |
DOI: | 10.1007/s10570-019-02907-x |