Identification and expression analysis of microRNAs in tibial growth plate of chicken through thiram toxicity

Thiram is a widely known tibial dyschondroplasia (TD) inducer. TD, a common metabolic cartilage disease, presents in rapidly growing poultry birds. There are evidences that miRNAs are involved in diverse aspects of normal skeletal development, but very less is known about the role of miRNAs in TD. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2020-02, Vol.27 (6), p.6628-6636
Hauptverfasser: Li, Zhixing, Li, Aoyun, Zhang, Jialu, Wang, Yaping, Zhang, Hui, Mehmood, Khalid, Lian, Yi, Iqbal, Mudassar, Li, Jiakui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thiram is a widely known tibial dyschondroplasia (TD) inducer. TD, a common metabolic cartilage disease, presents in rapidly growing poultry birds. There are evidences that miRNAs are involved in diverse aspects of normal skeletal development, but very less is known about the role of miRNAs in TD. Therefore, this study aimed to determine which genes and pathways show differential expression between TD suffered chickens and normal chickens. We collected growth plates from ten-days-old TD chickens and control chickens and performed high-throughput RNA sequencing (RNA-Seq). Afterwards, target prediction, GO annotation and KEGG pathway analysis were carried out to understand the role of DEMs (differentially expressed microRNAs). We obtained 96,884,760 and 94,574,290 clean reads and identified 17 significant DEMs between the TD and control groups. Functional enrichment analysis of DEMs indicated that the putative targets of miRNAs were remarkably enriched in bone-related pathways, such as Notch, MAPK and Autophagy. Overall, this study provides detailed understanding about the pathogenesis of thiram induced TD and new insights towards the molecular mechanism of miRNAs.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-019-06648-z