Effect of Ethanol on the Photovoltaic Performance of ZnO Based Dye Sensitized Solar Cells

In this study, ZnO particles were grown at different ethanol–water concentrations by using a simple hydrothermal method at 97°C. The changes in structure and morphology of particles were investigated by varying the ethanol concentration. Scanning electron microscope images indicated that ethanol con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystallography reports 2019-12, Vol.64 (7), p.1159-1164
Hauptverfasser: Alver, U., Kudret, A., Kerli, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, ZnO particles were grown at different ethanol–water concentrations by using a simple hydrothermal method at 97°C. The changes in structure and morphology of particles were investigated by varying the ethanol concentration. Scanning electron microscope images indicated that ethanol concentration was the main factor affecting the morphology and size of the ZnO particles. X-ray diffractometer pattern showed that crystal structures of the ZnO particles changed with the change in ethanol concentration of the starting solution. Zinc hydroxide phases rather than zinc oxide phases were found in ethanol-rich solutions during hydrothermal synthesis. Photovoltaic properties of the as-synthesized ZnO nanocrystals, as photoanode materials, were tested in dye-sensitized solar cells. Dye-sensitized solar cells were fabricated using a natural black carrot dye, and the performances of these cells were investigated for the electrode materials produced at different ethanol–water concentrations. The best solar energy conversion was obtained with ZnO electrodes fabricated at 100% ethanol concentration.
ISSN:1063-7745
1562-689X
DOI:10.1134/S1063774519070022