Invariant Spanning Trees for Quadratic Rational Maps
We study Thurston equivalence classes of quadratic post-critically finite branched coverings. For these maps, we introduce and study invariant spanning trees. We give a computational procedure for searching for invariant spanning trees. This procedure uses bisets over the fundamental group of a punc...
Gespeichert in:
Veröffentlicht in: | Arnold mathematical journal 2019-12, Vol.5 (4), p.435-481 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study Thurston equivalence classes of quadratic post-critically finite branched coverings. For these maps, we introduce and study invariant spanning trees. We give a computational procedure for searching for invariant spanning trees. This procedure uses bisets over the fundamental group of a punctured sphere. We also introduce a new combinatorial invariant of Thurston classes—the ivy graph. |
---|---|
ISSN: | 2199-6792 2199-6806 |
DOI: | 10.1007/s40598-019-00123-w |