Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review
Owing to the high spatial resolution at the atomic scale, the transmission electron microscopy (TEM) or scanning transmission electron microscopy is demonstrated as a promising characterization method to unveil the charge storage mechanism of electrode materials in Li-ion batteries. The structural e...
Gespeichert in:
Veröffentlicht in: | Rare metals 2020-03, Vol.39 (3), p.205-217 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Owing to the high spatial resolution at the atomic scale, the transmission electron microscopy (TEM) or scanning transmission electron microscopy is demonstrated as a promising characterization method to unveil the charge storage mechanism of electrode materials in Li-ion batteries. The structural evolution of electrode materials during charge/discharge process can be directly observed by using TEM. The detailed analysis establishes a relationship between the structure of electrode material and battery performance. Herein, we present a brief review of the atomic-scale characterization in Li-ion batteries, including Li (de)insertion mechanism (both cations and anions charge-compensation mechanism), migration of transition metal ions, and surface phase transition. The in-depth microscopic analysis reveals the detailed structural characteristics, which influence the properties of LIBs, establish the structure–function relationship, and facilitate the development of Li-ion batteries. |
---|---|
ISSN: | 1001-0521 1867-7185 |
DOI: | 10.1007/s12598-020-01369-6 |