Stable vectors in Moy–Prasad filtrations
Let $k$ be a finite extension of $\mathbb{Q}_{p}$ , let ${\mathcal{G}}$ be an absolutely simple split reductive group over $k$ , and let $K$ be a maximal unramified extension of $k$ . To each point in the Bruhat–Tits building of ${\mathcal{G}}_{K}$ , Moy and Prasad have attached a filtration of ${\...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2017-02, Vol.153 (2), p.358-372 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$k$
be a finite extension of
$\mathbb{Q}_{p}$
, let
${\mathcal{G}}$
be an absolutely simple split reductive group over
$k$
, and let
$K$
be a maximal unramified extension of
$k$
. To each point in the Bruhat–Tits building of
${\mathcal{G}}_{K}$
, Moy and Prasad have attached a filtration of
${\mathcal{G}}(K)$
by bounded subgroups. In this paper we give necessary and sufficient conditions for the dual of the first Moy–Prasad filtration quotient to contain stable vectors for the action of the reductive quotient. Our work extends earlier results by Reeder and Yu, who gave a classification in the case when
$p$
is sufficiently large. By passing to a finite unramified extension of
$k$
if necessary, we obtain new supercuspidal representations of
${\mathcal{G}}(k)$
. |
---|---|
ISSN: | 0010-437X 1570-5846 |
DOI: | 10.1112/S0010437X16008228 |