A channel-based perspective on conjugate priors
A desired closure property in Bayesian probability is that an updated posterior distribution be in the same class of distributions – say Gaussians – as the prior distribution. When the updating takes place via a statistical model, one calls the class of prior distributions the ‘conjugate priors’ of...
Gespeichert in:
Veröffentlicht in: | Mathematical structures in computer science 2020-01, Vol.30 (1), p.44-61 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A desired closure property in Bayesian probability is that an updated posterior distribution be in the same class of distributions – say Gaussians – as the prior distribution. When the updating takes place via a statistical model, one calls the class of prior distributions the ‘conjugate priors’ of the model. This paper gives (1) an abstract formulation of this notion of conjugate prior, using channels, in a graphical language, (2) a simple abstract proof that such conjugate priors yield Bayesian inversions and (3) an extension to multiple updates. The theory is illustrated with several standard examples. |
---|---|
ISSN: | 0960-1295 1469-8072 |
DOI: | 10.1017/S0960129519000082 |