A channel-based perspective on conjugate priors

A desired closure property in Bayesian probability is that an updated posterior distribution be in the same class of distributions – say Gaussians – as the prior distribution. When the updating takes place via a statistical model, one calls the class of prior distributions the ‘conjugate priors’ of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical structures in computer science 2020-01, Vol.30 (1), p.44-61
1. Verfasser: Jacobs, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A desired closure property in Bayesian probability is that an updated posterior distribution be in the same class of distributions – say Gaussians – as the prior distribution. When the updating takes place via a statistical model, one calls the class of prior distributions the ‘conjugate priors’ of the model. This paper gives (1) an abstract formulation of this notion of conjugate prior, using channels, in a graphical language, (2) a simple abstract proof that such conjugate priors yield Bayesian inversions and (3) an extension to multiple updates. The theory is illustrated with several standard examples.
ISSN:0960-1295
1469-8072
DOI:10.1017/S0960129519000082