Nonnegative realizability with Jordan structure

A general method is given for merging blocks in the Jordan canonical form of a nonnegative matrix. As a consequence, results, more general than any prior ones, are given for the universal realizability of spectra, that is, spectra which are realizable by a nonnegative matrix for each possible Jordan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2020-02, Vol.587, p.302-313
Hauptverfasser: Johnson, Charles R., Julio, Ana I., Soto, Ricardo L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A general method is given for merging blocks in the Jordan canonical form of a nonnegative matrix. As a consequence, results, more general than any prior ones, are given for the universal realizability of spectra, that is, spectra which are realizable by a nonnegative matrix for each possible Jordan canonical form allowed by the spectrum. In particular, we generalize a classical result due to Minc, regarding positive diagonalizable matrices. For example, any spectrum that is diagonalizably realizable by a nonnegative matrix with mostly positive off-diagonal entries is universally realizable.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2019.11.016