Adaptive neural network control for a class of discrete-time nonlinear interconnected systems with unknown dead-zone
In this paper, the problem of adaptive neural network control design is addressed for a kind of discrete-time nonlinear interconnected systems with unknown dead-zone. The control purpose of this paper is to design an adaptive neural network controller to ensure the systems stability and achieve the...
Gespeichert in:
Veröffentlicht in: | Journal of the Franklin Institute 2019-12, Vol.356 (18), p.11345-11363 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the problem of adaptive neural network control design is addressed for a kind of discrete-time nonlinear interconnected systems with unknown dead-zone. The control purpose of this paper is to design an adaptive neural network controller to ensure the systems stability and achieve the desired control performance. The neural networks are utilized to approximate the unknown functions. On the basis of utility functions, the critic signals are considered in the designed control signals. In order to offset the impact of unknown asymmetric dead-zone in the controlled system, the adaptive assistant signal is constructed. Based on the gradient descent rule, the weight tuning laws are obtained. The difference Lyapunov function theory is adopted to prove the studied system stability. The viability of the devised control strategy is further testified via some simulation results. |
---|---|
ISSN: | 0016-0032 1879-2693 0016-0032 |
DOI: | 10.1016/j.jfranklin.2019.08.024 |