Lightweight design of electric bus roof structure using multi-material topology optimisation

This paper presents a multi-material topology optimisation (MMTO) process for the lightweight design of an electric bus roof structure including the self-weight. The usage of electric buses is increasing owing to environmental issues. However, it is challenging to design a lightweight structure, bec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2020-03, Vol.61 (3), p.1273-1285
Hauptverfasser: Jung, Youngsuk, Lim, Sunghoon, Kim, Jongmin, Min, Seungjae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a multi-material topology optimisation (MMTO) process for the lightweight design of an electric bus roof structure including the self-weight. The usage of electric buses is increasing owing to environmental issues. However, it is challenging to design a lightweight structure, because the heavy battery pack mounted on the roof increases the deformation and reduces the safety. In a design including the self-weight, the appropriate distribution of multiple materials improves the performance more than that of a single material. The MMTO method has been applied to identify the optimal distribution of multiple materials. However, in the real-engineering problem, only a simple objective function such as compliance and a single constraint function such as the volume of material have been considered, whereas the mass reduction is the most important factor. In this paper, an MMTO process is proposed for the lightweight design of the bus roof structure to consider multiple displacement constraints including the self-weight. To control the complexity of the distribution of multiple materials for improving the manufacturability, the welding surface function is proposed. An optimisation process was constructed that can handle the complex finite-element model and multiple load cases, and it was validated according to the well-known compliance minimisation problem. Mass reduction was achieved via the lightweight optimisation, and the interfacial area between the different materials was reduced by employing the welding surface function.
ISSN:1615-147X
1615-1488
DOI:10.1007/s00158-019-02410-8