Differential genetic variation in adaptive strategies to a common environmental signal in Arabidopsis accessions: phytochrome‐mediated shade avoidance

Shade avoidance is a syndrome of plastic responses to light signals encountered in crowded plant communities and is a crucial component of competitive strategy in higher plants. The responses are mediated via signal perception by specific members of the phytochrome family of photoreceptors, which de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant, cell and environment cell and environment, 2002-01, Vol.25 (1), p.53-63
Hauptverfasser: Botto, J. F., Smith, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Shade avoidance is a syndrome of plastic responses to light signals encountered in crowded plant communities and is a crucial component of competitive strategy in higher plants. The responses are mediated via signal perception by specific members of the phytochrome family of photoreceptors, which detect the relative proportions of red (R) and far‐red (FR) radiation within dense communities. We analysed two aspects of shade avoidance, the acceleration of flowering and the enhancement of elongation growth, displayed by more than 100 accessions of Arabidopsis thaliana (Heyn.) in response to FR‐proximity signals. Both traits showed wide variation between accessions, which was unrelated to the latitude of the location of original collection. Flowering acceleration is a major feature of shade avoidance in rosette plants such as Arabidopsis, and most accessions showed dramatic responses, but several were identified as being recalcitrant to the proximity signal. These accessions are likely to be informative in the analysis of quantitative variation in shade avoidance. Hypocotyl elongation, treated here as an indicator of elongation growth responses, also varied widely amongst accessions. The variations in flowering acceleration and elongation were not correlated, indicating that microevolution in the downstream pathways from signal perception has occurred separately.
ISSN:0140-7791
1365-3040
DOI:10.1046/j.0016-8025.2001.00812.x