Modelling carburisation in 9Cr-1Mo ferritic steel tube substrates in experimental CO2 atmospheres

[Display omitted] •Both geometry and chemistry play a vital role in breakaway oxidation initiation.•Carbide precipitation impedes carbon diffusion leading to saturation and breakaway.•X-ray microanalysis combined with thermodynamic modelling identifies carbide phases.•2-D coupled thermodynamic-kinet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Corrosion science 2020-02, Vol.163, p.108248, Article 108248
Hauptverfasser: Karunaratne, M.S.A., Yan, S., Thomson, R.C., Coghlan, L., Higginson, R.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •Both geometry and chemistry play a vital role in breakaway oxidation initiation.•Carbide precipitation impedes carbon diffusion leading to saturation and breakaway.•X-ray microanalysis combined with thermodynamic modelling identifies carbide phases.•2-D coupled thermodynamic-kinetic model predicts the microstructural evolution.•Modelling explains many features observed experimentally and elucidates breakaway. By combining modelling and experimental work, new insights have been gained into the combined oxidation/carburisation of 9Cr-1Mo steels in CO2 rich environments. The breakaway-oxidation process is preceded by the rejection of carbon into the scale due to the poor solubility of carbon in the metal. Experimental TEM work reveals the formation of a carbide rich layer near the substrate surface which forms a further barrier against carbon ingress. The eventual oxidation of this layer could contribute to breakaway oxidation. A 2D finite-difference based diffusion model developed in combination with Thermo-Calc software underlines the role of specimen geometry on breakaway initiation.
ISSN:0010-938X
1879-0496
DOI:10.1016/j.corsci.2019.108248