THE NUMERICAL BOOTSTRAP

This paper proposes a numerical bootstrap method that is consistent in many cases where the standard bootstrap is known to fail and where the m-out-of-n bootstrap and subsampling have been themost commonly used inference approaches. We provide asymptotic analysis under both fixed and drifting parame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2020-02, Vol.48 (1), p.397-412
Hauptverfasser: Hong, Han, Li, Jessie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a numerical bootstrap method that is consistent in many cases where the standard bootstrap is known to fail and where the m-out-of-n bootstrap and subsampling have been themost commonly used inference approaches. We provide asymptotic analysis under both fixed and drifting parameter sequences, and we compare the approximation error of the numerical bootstrap with that of the m-out-of-n bootstrap and subsampling. Finally, we discuss applications of the numerical bootstrap, such as constrained and unconstrained M-estimators converging at both regular and nonstandard rates, Laplace-type estimators, and test statistics for partially identified models.
ISSN:0090-5364
2168-8966
DOI:10.1214/19-AOS1812