Quantum elliptic Calogero-Moser systems from gauge origami

A bstract We systematically study the interesting relations between the quantum elliptic Calogero-Moser system (eCM) and its generalization, and their corresponding supersymmetric gauge theories. In particular, we construct the suitable characteristic polynomial for the eCM system by considering cer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2020-02, Vol.2020 (2), p.1-41, Article 108
Hauptverfasser: Chen, Heng-Yu, Kimura, Taro, Lee, Norton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We systematically study the interesting relations between the quantum elliptic Calogero-Moser system (eCM) and its generalization, and their corresponding supersymmetric gauge theories. In particular, we construct the suitable characteristic polynomial for the eCM system by considering certain orbifolded instanton partition function of the corresponding gauge theory. This is equivalent to the introduction of certain co-dimension two defects. We next generalize our construction to the folded instanton partition function obtained through the so-called “gauge origami” construction and precisely obtain the corresponding characteristic polynomial for the doubled version, named the elliptic double Calogero-Moser (edCM) system.
ISSN:1029-8479
1126-6708
1029-8479
DOI:10.1007/JHEP02(2020)108