Ricci Flow from the Renormalization of Nonlinear Sigma Models in the Framework of Euclidean Algebraic Quantum Field Theory
The perturbative approach to nonlinear Sigma models and the associated renormalization group flow are discussed within the framework of Euclidean algebraic quantum field theory and of the principle of general local covariance. In particular we show in an Euclidean setting how to define Wick ordered...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2020-02, Vol.374 (1), p.241-276 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The perturbative approach to nonlinear Sigma models and the associated renormalization group flow are discussed within the framework of Euclidean algebraic quantum field theory and of the principle of general local covariance. In particular we show in an Euclidean setting how to define Wick ordered powers of the underlying quantum fields and we classify the freedom in such procedure by extending to this setting a recent construction of Khavkine, Melati, and Moretti for vector valued free fields. As a by-product of such classification, we provide a mathematically rigorous proof that, at first order in perturbation theory, the renormalization group flow of the nonlinear Sigma model is the Ricci flow. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-019-03508-2 |