k-means++: few more steps yield constant approximation

The k-means++ algorithm of Arthur and Vassilvitskii (SODA 2007) is a state-of-the-art algorithm for solving the k-means clustering problem and is known to give an O(log k)-approximation in expectation. Recently, Lattanzi and Sohler (ICML 2019) proposed augmenting k-means++ with O(k log log k) local...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-02
Hauptverfasser: Choo, Davin, Grunau, Christoph, Portmann, Julian, Rozhoň, Václav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The k-means++ algorithm of Arthur and Vassilvitskii (SODA 2007) is a state-of-the-art algorithm for solving the k-means clustering problem and is known to give an O(log k)-approximation in expectation. Recently, Lattanzi and Sohler (ICML 2019) proposed augmenting k-means++ with O(k log log k) local search steps to yield a constant approximation (in expectation) to the k-means clustering problem. In this paper, we improve their analysis to show that, for any arbitrarily small constant \(\eps > 0\), with only \(\eps k\) additional local search steps, one can achieve a constant approximation guarantee (with high probability in k), resolving an open problem in their paper.
ISSN:2331-8422