Feature-Inclusion Stochastic Search for Gaussian Graphical Models

We describe a serial algorithm called feature-inclusion stochastic search, or FINCS, that uses online estimates of edge-inclusion probabilities to guide Bayesian model determination in Gaussian graphical models. FINCS is compared to MCMC, to Metropolis-based search methods, and to the popular lasso;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and graphical statistics 2008-12, Vol.17 (4), p.790-808
Hauptverfasser: Scott, James G, Carvalho, Carlos M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a serial algorithm called feature-inclusion stochastic search, or FINCS, that uses online estimates of edge-inclusion probabilities to guide Bayesian model determination in Gaussian graphical models. FINCS is compared to MCMC, to Metropolis-based search methods, and to the popular lasso; it is found to be superior along a variety of dimensions, leading to better sets of discovered models, greater speed and stability, and reasonable estimates of edge-inclusion probabilities. We illustrate FINCS on an example involving mutual-fund data, where we compare the model-averaged predictive performance of models discovered with FINCS to those discovered by competing methods.
ISSN:1061-8600
1537-2715
DOI:10.1198/106186008X382683