Dual-energy materials characterization methods for laminography image enhancement based on photon counting detector
Laminography is a widely used NDT technique for large flat object which cannot be investigated by traditional computed tomography. However, due to the limited scanning angle of laminography, the reconstructed image has more artifact interference, which seriously affects the reconstructed image quali...
Gespeichert in:
Veröffentlicht in: | Journal of instrumentation 2019-02, Vol.14 (2), p.P02018-P02018 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Laminography is a widely used NDT technique for large flat object which cannot be investigated by traditional computed tomography. However, due to the limited scanning angle of laminography, the reconstructed image has more artifact interference, which seriously affects the reconstructed image quality. Reducing artifacts of the laminography image and enhancing the images have become important research effort. In this paper, we present dual-energy materials characterization methods based on photon counting detectors to reduce artifacts and enhance image for laminography. The photon counting detector used in this study allows the setting of two independent energy thresholds in order to acquire dual-energy images for laminography from a single scan. The dual energy imaging methods of basis material decomposition (BMD) and weighted logarithmic subtraction (WLS) were studied in the paper with respect to laminography image enhancement. A fast decomposition algorithm on laminographic projection domain with approximating the inverse dual-energy equations to calculate the thickness of basic materials was used in the BMD dual-energy imaging methods. The experimental results show that the BMD method can characterize materials and enhance features of the basic material within the laminographic dataset. In the WLS method, a linear operation was applied on dual-energy images reconstruction directly, which can eliminate the attenuation of one specific material in the resultant image by setting an appropriate weighting factor. In our experiments. WLS method was used successfully to eliminate the strong artifacts generated by the special material and enhance the images. Dual-energy materials characterization methods based on photon counting detectors show potential applications in laminography. |
---|---|
ISSN: | 1748-0221 1748-0221 |
DOI: | 10.1088/1748-0221/14/02/P02018 |