Data Reduction and Image Reconstruction Techniques for Non-redundant Masking
The technique of non-redundant masking (NRM) transforms a conventional telescope into an interferometric array. In practice, this provides a much better constrained point-spread function than a filled aperture and thus higher resolution than traditional imaging methods. Here, we describe an NRM data...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal. Supplement series 2017-11, Vol.233 (1), p.9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The technique of non-redundant masking (NRM) transforms a conventional telescope into an interferometric array. In practice, this provides a much better constrained point-spread function than a filled aperture and thus higher resolution than traditional imaging methods. Here, we describe an NRM data reduction pipeline. We discuss strategies for NRM observations regarding dithering patterns and calibrator selection. We describe relevant image calibrations and use example Large Binocular Telescope data sets to show their effects on the scatter in the Fourier measurements. We also describe the various ways to calculate Fourier quantities, and discuss different calibration strategies. We present the results of image reconstructions from simulated observations where we adjust prior images, weighting schemes, and error bar estimation. We compare two imaging algorithms and discuss implications for reconstructing images from real observations. Finally, we explore how the current state of the art compares to next-generation Extremely Large Telescopes. |
---|---|
ISSN: | 0067-0049 1538-4365 |
DOI: | 10.3847/1538-4365/aa90bb |