Graph-manifolds and integrable Hamiltonian systems
We study the topology of the three-dimensional constant- energy manifolds of integrable Hamiltonian systems realizable in the form of a special class of so-called `molecules'. Namely, for this class of manifolds the Reidemeister torsion is calculated in terms of the Fomenko-Zieschang invariants...
Gespeichert in:
Veröffentlicht in: | Sbornik. Mathematics 2018-05, Vol.209 (5), p.739-758 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the topology of the three-dimensional constant- energy manifolds of integrable Hamiltonian systems realizable in the form of a special class of so-called `molecules'. Namely, for this class of manifolds the Reidemeister torsion is calculated in terms of the Fomenko-Zieschang invariants. A connection between the torsion of a constant-energy manifold and stable periodic trajectories is found. Bibliography: 17 titles. |
---|---|
ISSN: | 1064-5616 1468-4802 |
DOI: | 10.1070/SM8946 |