Non-relativistic susceptibility and a dark matter application
When thermal rate equations are derived for the evolution of slow variables, it is often practical to parametrize the right-hand side with chemical potentials. To close the system, the chemical potentials are subsequently re-expressed in terms of the slow variables, which involves the consideration...
Gespeichert in:
Veröffentlicht in: | Journal of cosmology and astroparticle physics 2019-10, Vol.2019 (10), p.78-78 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When thermal rate equations are derived for the evolution of slow variables, it is often practical to parametrize the right-hand side with chemical potentials. To close the system, the chemical potentials are subsequently re-expressed in terms of the slow variables, which involves the consideration of a “susceptibility”. Here we study a non-relativistic situation in which chemical potentials are large compared with the temperature, as is relevant for late-time pair annihilations in dark matter freeze-out. An order-of-magnitude estimate and a lattice simulation are presented for a susceptibility dominated by bound states of stop-like mediators. After this “calibration”, the formalism is applied to a model with Majorana singlet dark matter, confirming that masses up to the multi-TeV domain are viable in the presence of sufficient (though not beyond a limit) mass degeneracy in the dark sector. |
---|---|
ISSN: | 1475-7516 1475-7516 |
DOI: | 10.1088/1475-7516/2019/10/078 |