Bayesian reconstruction of the Milky Way dark matter distribution

We develop a novel Bayesian methodology aimed at reliably and precisely inferring the distribution of dark matter within the Milky Way using rotation curve data. We identify a subset of the available rotation curve tracers that are mutually consistent with each other, thus eliminating data sets that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cosmology and astroparticle physics 2019-09, Vol.2019 (9), p.46-46
Hauptverfasser: Karukes, E.V., Benito, M., Iocco, F., Trotta, R., Geringer-Sameth, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46
container_issue 9
container_start_page 46
container_title Journal of cosmology and astroparticle physics
container_volume 2019
creator Karukes, E.V.
Benito, M.
Iocco, F.
Trotta, R.
Geringer-Sameth, A.
description We develop a novel Bayesian methodology aimed at reliably and precisely inferring the distribution of dark matter within the Milky Way using rotation curve data. We identify a subset of the available rotation curve tracers that are mutually consistent with each other, thus eliminating data sets that might suffer from systematic bias. We investigate different models for the mass distribution of the luminous (baryonic) component that bracket the range of likely morphologies. We demonstrate the statistical performance of our method on simulated data in terms of coverage, fractional distance, and mean squared error. Applying it to Milky Way data we measure the local dark matter density at the solar circle ρ0 to be ρ0=0.43±0.02(stat)±0.01(sys) GeV/cm3, with an accuracy ∼ 6%. This result is robust to the assumed baryonic morphology. The scale radius and inner slope of the dark matter profile are degenerate and cannot be individually determined with high accuracy. We show that these results are robust to several possible residual systematic errors in the rotation curve data.
doi_str_mv 10.1088/1475-7516/2019/09/046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2357578619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357578619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-1a4f0305c2ee6add00deb738bbe62caf44a4742586d5d32997faea17e0d2433e3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_grDgOXb2OznWolWoeFE8LpvsBNOPpO5uDvn3JlREeGGGl4cZeAi5ZXDPIM8XTBqVGcX0ggMrFjBG6jMy--vP_-2X5CrGLQDXQuQzsnxwA8bGtTRg1bUxhb5KTdfSrqbpC-lrs98N9NMN1LuwoweXEgbqmxFsyn4ir8lF7fYRb37nnHw8Pb6vnrPN2_pltdxklZAmZczJGgSoiiNq5z2Ax9KIvCxR88rVUjppJFe59soLXhSmduiYQfBcCoFiTu5Od4-h--4xJrvt-tCOLy0XyiiTa1aMlDpRVehiDFjbY2gOLgyWgZ1s2cmEnUzYyZaFMVKLH31AXWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357578619</pqid></control><display><type>article</type><title>Bayesian reconstruction of the Milky Way dark matter distribution</title><source>Institute of Physics Journals</source><creator>Karukes, E.V. ; Benito, M. ; Iocco, F. ; Trotta, R. ; Geringer-Sameth, A.</creator><creatorcontrib>Karukes, E.V. ; Benito, M. ; Iocco, F. ; Trotta, R. ; Geringer-Sameth, A.</creatorcontrib><description>We develop a novel Bayesian methodology aimed at reliably and precisely inferring the distribution of dark matter within the Milky Way using rotation curve data. We identify a subset of the available rotation curve tracers that are mutually consistent with each other, thus eliminating data sets that might suffer from systematic bias. We investigate different models for the mass distribution of the luminous (baryonic) component that bracket the range of likely morphologies. We demonstrate the statistical performance of our method on simulated data in terms of coverage, fractional distance, and mean squared error. Applying it to Milky Way data we measure the local dark matter density at the solar circle ρ0 to be ρ0=0.43±0.02(stat)±0.01(sys) GeV/cm3, with an accuracy ∼ 6%. This result is robust to the assumed baryonic morphology. The scale radius and inner slope of the dark matter profile are degenerate and cannot be individually determined with high accuracy. We show that these results are robust to several possible residual systematic errors in the rotation curve data.</description><identifier>ISSN: 1475-7516</identifier><identifier>EISSN: 1475-7516</identifier><identifier>DOI: 10.1088/1475-7516/2019/09/046</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Baryons ; Bayesian analysis ; Computer simulation ; Dark matter ; Galactic rotation ; Mass distribution ; Morphology ; Robustness ; Systematic errors ; Tracers</subject><ispartof>Journal of cosmology and astroparticle physics, 2019-09, Vol.2019 (9), p.46-46</ispartof><rights>Copyright IOP Publishing Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-1a4f0305c2ee6add00deb738bbe62caf44a4742586d5d32997faea17e0d2433e3</citedby><cites>FETCH-LOGICAL-c347t-1a4f0305c2ee6add00deb738bbe62caf44a4742586d5d32997faea17e0d2433e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Karukes, E.V.</creatorcontrib><creatorcontrib>Benito, M.</creatorcontrib><creatorcontrib>Iocco, F.</creatorcontrib><creatorcontrib>Trotta, R.</creatorcontrib><creatorcontrib>Geringer-Sameth, A.</creatorcontrib><title>Bayesian reconstruction of the Milky Way dark matter distribution</title><title>Journal of cosmology and astroparticle physics</title><description>We develop a novel Bayesian methodology aimed at reliably and precisely inferring the distribution of dark matter within the Milky Way using rotation curve data. We identify a subset of the available rotation curve tracers that are mutually consistent with each other, thus eliminating data sets that might suffer from systematic bias. We investigate different models for the mass distribution of the luminous (baryonic) component that bracket the range of likely morphologies. We demonstrate the statistical performance of our method on simulated data in terms of coverage, fractional distance, and mean squared error. Applying it to Milky Way data we measure the local dark matter density at the solar circle ρ0 to be ρ0=0.43±0.02(stat)±0.01(sys) GeV/cm3, with an accuracy ∼ 6%. This result is robust to the assumed baryonic morphology. The scale radius and inner slope of the dark matter profile are degenerate and cannot be individually determined with high accuracy. We show that these results are robust to several possible residual systematic errors in the rotation curve data.</description><subject>Baryons</subject><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Dark matter</subject><subject>Galactic rotation</subject><subject>Mass distribution</subject><subject>Morphology</subject><subject>Robustness</subject><subject>Systematic errors</subject><subject>Tracers</subject><issn>1475-7516</issn><issn>1475-7516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRsFZ_grDgOXb2OznWolWoeFE8LpvsBNOPpO5uDvn3JlREeGGGl4cZeAi5ZXDPIM8XTBqVGcX0ggMrFjBG6jMy--vP_-2X5CrGLQDXQuQzsnxwA8bGtTRg1bUxhb5KTdfSrqbpC-lrs98N9NMN1LuwoweXEgbqmxFsyn4ir8lF7fYRb37nnHw8Pb6vnrPN2_pltdxklZAmZczJGgSoiiNq5z2Ax9KIvCxR88rVUjppJFe59soLXhSmduiYQfBcCoFiTu5Od4-h--4xJrvt-tCOLy0XyiiTa1aMlDpRVehiDFjbY2gOLgyWgZ1s2cmEnUzYyZaFMVKLH31AXWw</recordid><startdate>20190923</startdate><enddate>20190923</enddate><creator>Karukes, E.V.</creator><creator>Benito, M.</creator><creator>Iocco, F.</creator><creator>Trotta, R.</creator><creator>Geringer-Sameth, A.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190923</creationdate><title>Bayesian reconstruction of the Milky Way dark matter distribution</title><author>Karukes, E.V. ; Benito, M. ; Iocco, F. ; Trotta, R. ; Geringer-Sameth, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-1a4f0305c2ee6add00deb738bbe62caf44a4742586d5d32997faea17e0d2433e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Baryons</topic><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Dark matter</topic><topic>Galactic rotation</topic><topic>Mass distribution</topic><topic>Morphology</topic><topic>Robustness</topic><topic>Systematic errors</topic><topic>Tracers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karukes, E.V.</creatorcontrib><creatorcontrib>Benito, M.</creatorcontrib><creatorcontrib>Iocco, F.</creatorcontrib><creatorcontrib>Trotta, R.</creatorcontrib><creatorcontrib>Geringer-Sameth, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of cosmology and astroparticle physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karukes, E.V.</au><au>Benito, M.</au><au>Iocco, F.</au><au>Trotta, R.</au><au>Geringer-Sameth, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian reconstruction of the Milky Way dark matter distribution</atitle><jtitle>Journal of cosmology and astroparticle physics</jtitle><date>2019-09-23</date><risdate>2019</risdate><volume>2019</volume><issue>9</issue><spage>46</spage><epage>46</epage><pages>46-46</pages><issn>1475-7516</issn><eissn>1475-7516</eissn><abstract>We develop a novel Bayesian methodology aimed at reliably and precisely inferring the distribution of dark matter within the Milky Way using rotation curve data. We identify a subset of the available rotation curve tracers that are mutually consistent with each other, thus eliminating data sets that might suffer from systematic bias. We investigate different models for the mass distribution of the luminous (baryonic) component that bracket the range of likely morphologies. We demonstrate the statistical performance of our method on simulated data in terms of coverage, fractional distance, and mean squared error. Applying it to Milky Way data we measure the local dark matter density at the solar circle ρ0 to be ρ0=0.43±0.02(stat)±0.01(sys) GeV/cm3, with an accuracy ∼ 6%. This result is robust to the assumed baryonic morphology. The scale radius and inner slope of the dark matter profile are degenerate and cannot be individually determined with high accuracy. We show that these results are robust to several possible residual systematic errors in the rotation curve data.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1475-7516/2019/09/046</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1475-7516
ispartof Journal of cosmology and astroparticle physics, 2019-09, Vol.2019 (9), p.46-46
issn 1475-7516
1475-7516
language eng
recordid cdi_proquest_journals_2357578619
source Institute of Physics Journals
subjects Baryons
Bayesian analysis
Computer simulation
Dark matter
Galactic rotation
Mass distribution
Morphology
Robustness
Systematic errors
Tracers
title Bayesian reconstruction of the Milky Way dark matter distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T08%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20reconstruction%20of%20the%20Milky%20Way%20dark%20matter%20distribution&rft.jtitle=Journal%20of%20cosmology%20and%20astroparticle%20physics&rft.au=Karukes,%20E.V.&rft.date=2019-09-23&rft.volume=2019&rft.issue=9&rft.spage=46&rft.epage=46&rft.pages=46-46&rft.issn=1475-7516&rft.eissn=1475-7516&rft_id=info:doi/10.1088/1475-7516/2019/09/046&rft_dat=%3Cproquest_cross%3E2357578619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357578619&rft_id=info:pmid/&rfr_iscdi=true