Bayesian reconstruction of the Milky Way dark matter distribution

We develop a novel Bayesian methodology aimed at reliably and precisely inferring the distribution of dark matter within the Milky Way using rotation curve data. We identify a subset of the available rotation curve tracers that are mutually consistent with each other, thus eliminating data sets that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cosmology and astroparticle physics 2019-09, Vol.2019 (9), p.46-46
Hauptverfasser: Karukes, E.V., Benito, M., Iocco, F., Trotta, R., Geringer-Sameth, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a novel Bayesian methodology aimed at reliably and precisely inferring the distribution of dark matter within the Milky Way using rotation curve data. We identify a subset of the available rotation curve tracers that are mutually consistent with each other, thus eliminating data sets that might suffer from systematic bias. We investigate different models for the mass distribution of the luminous (baryonic) component that bracket the range of likely morphologies. We demonstrate the statistical performance of our method on simulated data in terms of coverage, fractional distance, and mean squared error. Applying it to Milky Way data we measure the local dark matter density at the solar circle ρ0 to be ρ0=0.43±0.02(stat)±0.01(sys) GeV/cm3, with an accuracy ∼ 6%. This result is robust to the assumed baryonic morphology. The scale radius and inner slope of the dark matter profile are degenerate and cannot be individually determined with high accuracy. We show that these results are robust to several possible residual systematic errors in the rotation curve data.
ISSN:1475-7516
1475-7516
DOI:10.1088/1475-7516/2019/09/046