In natura and nanoencapsulated essential oils from Xylopia aromatica reduce oviposition of Bemisia tabaci in Phaseolus vulgaris

Bemisia tabaci is an agricultural pest of worldwide distribution that causes serious damage to several crops. It is of crucial importance to control this pest, especially for large-scale production. Accordingly, formulations based on essential oils of pesticidal action are potentially promising in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pest science 2020-03, Vol.93 (2), p.807-821
Hauptverfasser: Peres, Marília Cristina, de Souza Costa, Géssica Carla, dos Reis, Laura Eduarda Lopes, da Silva, Lidiane Dias, Peixoto, Márcio Fernandes, Alves, Cassia Cristina Fernandes, Forim, Moacir Rossi, Quintela, Eliane D., Araújo, Wagner L., de Melo Cazal, Cristiane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bemisia tabaci is an agricultural pest of worldwide distribution that causes serious damage to several crops. It is of crucial importance to control this pest, especially for large-scale production. Accordingly, formulations based on essential oils of pesticidal action are potentially promising in the agricultural sector. Additionally, the nanoencapsulation of these bioactive compounds promotes their protection from environmental degradation and prolongs their biological activity. Here, we develop PCL (poly-ε-caprolactone) nanoparticles containing essential oils of Xylopia aromatica leaves and fruits and evaluate their insecticidal effect in B. tabaci Middle East Asia Minor 1 biotype B. The average yields of essential oils from leaves and fruits of X. aromatica were 0.05 and 0.80%, respectively. The major compounds in the essential oil of leaves were bicyclogermacrene (44.80%), α-pinene (8.23%) and β-pinene (7.75%) while in fruits were α-pinene (35.40%), β-phellandrene (31.05%) and β-pinene (22.51%). The PCL nanoparticles containing the essential oils exhibited encapsulation efficiency of 95% and particle diameter smaller than 500 nm. Biodegradable nanospheres substantially protected the essential oils from accelerated degradation caused by UV light and also prevented possible phytotoxic activity of the in natura essential oil from leaves of X. aromatica in high concentrations, probably due to the gradual release. In natura and nanoencapsulated essential oils from leaves and fruits decreased (up to 98%) the oviposition of B. tabaci in common bean leaves. Our results indicate that both in natura and nanoencapsulated oils of X. aromatica may potentially be used as alternative to the chemical control of B. tabaci . Graphic abstract
ISSN:1612-4758
1612-4766
DOI:10.1007/s10340-019-01186-6