Universal Value Density Estimation for Imitation Learning and Goal-Conditioned Reinforcement Learning
This work considers two distinct settings: imitation learning and goal-conditioned reinforcement learning. In either case, effective solutions require the agent to reliably reach a specified state (a goal), or set of states (a demonstration). Drawing a connection between probabilistic long-term dyna...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work considers two distinct settings: imitation learning and goal-conditioned reinforcement learning. In either case, effective solutions require the agent to reliably reach a specified state (a goal), or set of states (a demonstration). Drawing a connection between probabilistic long-term dynamics and the desired value function, this work introduces an approach which utilizes recent advances in density estimation to effectively learn to reach a given state. As our first contribution, we use this approach for goal-conditioned reinforcement learning and show that it is both efficient and does not suffer from hindsight bias in stochastic domains. As our second contribution, we extend the approach to imitation learning and show that it achieves state-of-the art demonstration sample-efficiency on standard benchmark tasks. |
---|---|
ISSN: | 2331-8422 |