Hybrid nanoelectronic-magnetic device with magnetoresistive core–shell Fe/FeC nanoparticles

We propose a concept of hybrid nanoelectronic-magnetic device made of magnetic Fe–C core–shell nanoparticles deposited onto prepatterned Si (111) substrate with basic circuitry made of metallic conductive lines. The synthesis of magnetic material and the creation of nanoelectronic prepatterned inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2020-03, Vol.126 (3), Article 200
Hauptverfasser: Crisan, O., Crisan, A. D., Dumitrache, F., Luculescu, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a concept of hybrid nanoelectronic-magnetic device made of magnetic Fe–C core–shell nanoparticles deposited onto prepatterned Si (111) substrate with basic circuitry made of metallic conductive lines. The synthesis of magnetic material and the creation of nanoelectronic prepatterned interdigitated die are reported and to prove the effectiveness in devices, their magnetotransport properties are investigated. Magnetic Fe/FeC nanoparticles, 11 nm diameter, with a core–shell structure have been prepared by laser pyrolysis. Two different layouts of prepatterned interdigitated die, have been conceived using e-beam lithography, with various geometries. A range of microscopy techniques, transmission electron, scanning and optical, were employed for morphological characterization of the as-obtained structures. Magnetic and magnetotransport characterization using SQUID magnetometry has been performed onto both the core–shell nanoparticles and onto the hybrid device obtained by depositing centrifugated and dispersed core–shell nanoparticles from liquid carrier solutions. From magnetotransport measurements, it has been revealed that the hybrid device made of Fe/FeC nanosized materials on prepatterned interdigitated die exhibit a large giant magnetoresistive (GMR) effect of about 8% at 300 K. This result is promising in view of the use of such devices as arrays of nanosensors and in spintronic applications.
ISSN:0947-8396
1432-0630
DOI:10.1007/s00339-020-3378-y